How can I score full marks in the Statistics questions in exams?

0 1 View | Posted 5 months ago
Asked by Chandra Pruthi

  • 1 Answer

  • J

    Answered by

    Jaya Sinha

    5 months ago

    Students must cover the foundational concepts of statistics such as deviation, variance, and standard deviation in order to get 100% marks. We recommend students practice every example and exercise of Statistics from the NCERT textbook for scoring full marks. We have provided NCERT Solutions for Statistics to help students in their preparation journey.

Similar Questions for you

A
alok kumar singh

  | 1 2 2 i + 1 | = α ( 1 2 2 i ) + β ( 1 + i )  

9 4 + 4 = α ( 1 2 2 i ) + β ( 1 + i )

5 2 = α ( 1 2 ) + β + i ( 2 α + β )             

α 2 + β = 5 2      ...(1)

 –2α + β = 0                    …(2)

Solving (1) and (2)

α 2 + 2 α = 5 2

5 2 α = 5 2            

a = 1

b = 2

-> a + b = 3

A
alok kumar singh

Start with

(1) E ¯ : 6 ! 2 ! = 3 6 0  

(2)    G E ¯ : 5 ! 2 ! , G N ¯ : 5 ! 2 !  

(3) GTE : 4!, GTN: 4!, GTT : 4!

(4) GTWENTY = 1

360 + 60 + 60 + 24 + 24 + 24 + 1 = 553

A
alok kumar singh

f ( x ) = { 2 + 2 x , x ( 1 , 0 ) 1 x 3 , x [ 0 , 3 )

g ( x ) = { x , x [ 0 , 1 ) x , x ( 3 , 0 )   ->g(x) = |x|, x Î (–3, 1)

f ( g ( x ) ) = { 2 + 2 | x | , | x | ( 1 , 0 ) x ? 1 | x | 3 , | x | [ 0 , 3 ) x ( 3 , 1 )            

f ( g ( x ) ) = { 1 x 3 , x [ 0 , 1 ) 1 + x 3 , x ( 3 , 0 )

Range of fog(x) is [0, 1]

            

            Range of fog(x) is [0, 1]

A
alok kumar singh

First term = a

Common difference = d

Given: a + 5d = 2        . (1)

Product (P) = (a1a5a4) = a (a + 4d) (a + 3d)

Using (1)

P = (2 – 5d) (2 – d) (2 – 2d)

-> = (2 – 5d) (2 –d) (– 2) + (2 – 5d) (2 – 2d) (– 1) + (– 5) (2 – d) (2 – 2d)

d P d d = –2 [ (d – 2) (5d – 2) + (d – 1) (5d – 2) + (d – 1) (5d – 2) + 5 (d – 1) (d – 2)]

= –2 [15d2 – 34d + 16]

d = 8 5 o r 2 3

at  ( 8 5 ) , product attains maxima

-> d = 1.6

A
alok kumar singh

16cos2θ + 25sin2θ + 40sinθ cosθ = 1

16 + 9sin2θ + 20sin 2θ = 1

1 6 + 9 ( 1 c o s 2 θ 2 )            + 20sin 2θ = 1

9 2 c o s 2 θ + 2 0 s i n 2 θ = 3 9 2            

– 9cos 2θ + 40sin 2θ = – 39

9 ( 1 t a n 2 θ 1 + t a n 2 θ ) + 4 0 ( 2 t a n θ 1 + t a n 2 θ ) = 3 9            

48tan2θ + 80tanθ + 30 = 0

24tan2θ + 40tanθ + 15 = 0

  t a n θ = 4 0 ± ( 4 0 ) 2 1 5 × 2 4 × 4 2 × 2 4        

  t a n θ = 4 0 ± 1 6 0 2 × 2 4           

= 1 0 ± 1 0 1 2            

-> t a n θ = 1 0 1 0 1 2 , t a n θ = 1 0 1 0 1 2  

So t a n θ = 1 0 1 0 1 2  will be rejected as θ ( π 2 , π 2 )  

Option (4) is correct.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post