A uniform rod of length b capable of turning about its end which is out of water, rests inclined to the vertical. If the specific gravity of the rod is 5 9 , find the length of the rod immersed in water.

 

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mfrac> <mrow> <mrow> <mi>b</mi> </mrow> </mrow> <mrow> <mrow> <mn>2</mn> </mrow> </mrow> </mfrac> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mfrac> <mrow> <mrow> <mi>b</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </mfrac> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mfrac> <mrow> <mrow> <mi>b</mi> </mrow> </mrow> <mrow> <mrow> <mn>6</mn> </mrow> </mrow> </mfrac> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mfrac> <mrow> <mrow> <mi>b</mi> </mrow> </mrow> <mrow> <mrow> <mn>3</mn> </mrow> </mrow> </mfrac> </math> </span></p>
12 Views|Posted 5 months ago
Asked by Shiksha User
1 Answer
R
5 months ago
Correct Option - 4
Detailed Solution:

Let 2 x  length of rod is immersed in water.

τ Hinge   (  net ) = 0

m g ? b 2 s i n ? θ - F B ( b - x ) s i n ? θ = 0

m g b = 2 ( b - x ) F B

F B = m g b 2 ( b - x ) = ( A b d ) b 2 ( b - x ) g  , where d =  density of material of rod

  F B = Buoyant force 

Equate F B , A b 2 d 2 ( b - x ) = 2 A x ρ

b 2 = 4 x ( b - x ) 9 5

  x 2 - b x + 5 b 2 36 = 0 x = b 6 immersed = b 3

Thumbs Up IconUpvote Thumbs Down Icon

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Physics Mechanical Properties of Fluids 2025

Physics Mechanical Properties of Fluids 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering