Let 3, 6, 9, 12,…. upto 78 terms and 5, 9, 13, 17,…. upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to…………
Let 3, 6, 9, 12,…. upto 78 terms and 5, 9, 13, 17,…. upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to…………
First common term to both AP's is 9
t78 of
t59 of
nth common term
9 + (n – 1) 12 234
n <
Now sum of 19 terms with a = 9, d = 12
Similar Questions for you
First term = a
Common difference = d
Given: a + 5d = 2 . (1)
Product (P) = (a1a5a4) = a (a + 4d) (a + 3d)
Using (1)
P = (2 – 5d) (2 – d) (2 – 2d)
-> = (2 – 5d) (2 –d) (– 2) + (2 – 5d) (2 – 2d) (– 1) + (– 5) (2 – d) (2 – 2d)
= –2 [ (d – 2) (5d – 2) + (d – 1) (5d – 2)
a, ar, ar2, ….ar63
a+ar+ar2 +….+ar63 = 7 [a + ar2 + ar4 +.+ar62]
1 + r = 7
r = 6
S20 = [2a + 19d] = 790
2a + 19d = 79 . (1)
2a + 9d = 29 . (2)
from (1) and (2) a = –8, d = 5
= 405 – 10
= 395
3, 7, 11, 15, 19, 23, 27, . 403 = AP1
2, 5, 8, 11, 14, 17, 20, 23, . 401 = AP2
so common terms A.P.
11, 23, 35, ., 395
->395 = 11 + (n – 1) 12
->395 – 11 = 12 (n – 1)
32 = n – 1
n = 33
Sum =
=
= 6699
3, a, b, c are in A.P.
a – 3 = b – a
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 11th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering