Let in a series of 2n observations, half of them are equal to a and remaining half are equal to –a. Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of a² + b² is equal to :
Let in a series of 2n observations, half of them are equal to a and remaining half are equal to –a. Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of a² + b² is equal to :
The data consists of n values of a and n values of -a.
Mean x? = (n*a + n* (-a) / 2n = 0 / 2n = 0.
Variance σ² = (Σx? ²)/N - x? ² = (n*a² + n* (-a)²) / 2n - 0² = 2na² / 2n = a².
If a value b is added to all observations, the new mean is x? ' = x? + b = 0 + b = b.
We are given the new mean is 5, so b=5.
A
Similar Questions for you
Variance =
α2 + β2 = 897.7 × 8
= 7181.6
xi | fi | c.f. |
0 – 4 4 – 8 8 – 12 12 – 16 16 – 20 | 2 4 7 8 6 | 2 6 13 21 27 |
So, we have median lies in the class 12 – 16
I1 = 12, f = 8, h = 4, c.f. = 13
So, here we apply formula
20 M = 20 × 12.25
= 245
212 + a + b = 330
⇒ a + b = 118
= 3219
11760 + a2 + b2 = 19314
⇒ a2 + b2 = 19314 – 11760
= 7554
(a + b)2 –2ab = 7554
From here b = 41.795
a + b = 118
⇒ a + b + 2b = 118 + 83.59
= 201.59
Kindly go throuigh the solution
Given
&
(i) & (ii)
Now variance = 1 given
->(a - b) (a - b + 4) = 0
Since
Variance =
Let 2a2 – a + 1 = 5x
D = 1 – 4 (2) (1 – 5n)
= 40n – 7, which is not
As each square form is
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Statistics 2021
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering