Let S₁ be the sum of first 2n terms of an arithmetic progression. Let S₂ be the sum of first 4n terms of the same arithmetic progression. If (S₂ - S₁) is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to :
Let S₁ be the sum of first 2n terms of an arithmetic progression. Let S₂ be the sum of first 4n terms of the same arithmetic progression. If (S₂ - S₁) is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to :
The problem provides non-standard formulas for sums S? and S? :
S? = n [a + (2n-1)d]
S? = 2n [a + (4n-1)d]
We are given S? - S? = 1000.
S? - S? = 2n [a + (4n-1)d] - n [a + (2n-1)d]
= (2na + 8n²d - 2nd) - (na + 2n²d - nd)
= na + 6n²d - and = n [a + (6n-1)d].
So, n [a + (6n-1)d] = 1000.
We need to find S? n.
Similar Questions for you
First term = a
Common difference = d
Given: a + 5d = 2 . (1)
Product (P) = (a1a5a4) = a (a + 4d) (a + 3d)
Using (1)
P = (2 – 5d) (2 – d) (2 – 2d)
-> = (2 – 5d) (2 –d) (– 2) + (2 – 5d) (2 – 2d) (– 1) + (– 5) (2 – d) (2 – 2d)
= –2 [ (d – 2) (5d – 2) + (d – 1) (5d – 2)
a, ar, ar2, ….ar63
a+ar+ar2 +….+ar63 = 7 [a + ar2 + ar4 +.+ar62]
1 + r = 7
r = 6
S20 = [2a + 19d] = 790
2a + 19d = 79 . (1)
2a + 9d = 29 . (2)
from (1) and (2) a = –8, d = 5
= 405 – 10
= 395
3, 7, 11, 15, 19, 23, 27, . 403 = AP1
2, 5, 8, 11, 14, 17, 20, 23, . 401 = AP2
so common terms A.P.
11, 23, 35, ., 395
->395 = 11 + (n – 1) 12
->395 – 11 = 12 (n – 1)
32 = n – 1
n = 33
Sum =
=
= 6699
3, a, b, c are in A.P.
a – 3 = b – a
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 11th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering