Let ta be an integer such that all the real roots of the polynomial 2x5 + 5x4 + 10x3 + 10x2 + 10x + 10 lie in the interval (a, a +1). Then | a |  is equal to……….

8 Views|Posted 4 months ago
Asked by Shiksha User
1 Answer
A
4 months ago

Given f ( x ) = 2 x 5 + 5 x 4 + 1 0 x 3 + 1 0 x 2 + 1 0 x + 1 0

f ( 1 ) = 3 > 0 & f ( 2 ) = 3 4 < 0           

So at least one root will lie in (-2, -1)

now f ' ( x ) = 1 0 x 4 + 2 0 x 3 + 3 0 x 2 + 2 0 x + 1 0  

= 1 0 [ x 4 + 2 x 3 + 3 x 2 + 2 x + 1 ]            

= 1 0 x 2 ( x + 1 x + 1 ) 2 > 0 x R           

So, f(x) be purely increasing function so exactly one root of f(x) that will lie in (-2, 1). Hence |a| = 2

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

It's difficult but in some colleges you may can get 

  a + 5 b  is collinear with c  

  a + 5 b = c           …(1)

b + 6 c is collinear with a  

⇒   b + 6 c = μ a               …(2)

From (1) and (2)

  b + 6 c = μ ( λ c 5 b )          

-> ( 1 + 5 μ ) b + ( 6 λ μ ) c = 0

? b and c

( s i n x c o s x ) s i n 2 x t a n x ( s i n 3 x + c o s 3 x ) d x

( s i n x c o s x ) s i n x c o s x s i n 3 x + c o s 3 x d x , put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt

-> 1 3 d t t

= l n t 3 + c

= l n | s i n 3 x + c o s 3 x | 3 + c

             

           

...Read more

f ( x ) = ( 2 x + 2 x ) t a n x t a n 1 ( 2 x 2 3 x + 1 ) ( 7 x 2 3 x + 1 ) 3

f ( x ) = ( 2 x + 2 x ) . t a n x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3

f ' ( x ) = ( 2 x + 2 x ) . s e c 2 x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3 + t a n x . ( Q ( x ) )

f ' ( 0 ) = 2 . 1 π 4 . 1

= π

 

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths Ncert Solutions class 12th 2026

Maths Ncert Solutions class 12th 2026

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering