Let the function f(x) = 2x2 – loge x, x  > 0, be decreasing in (0, a) and increasing in (a, 4). A tangent to the parabola y2 = 4ax at a point P on it passes through the point (8a, 8a – 1) but does not pass through the point ( 1 a , 0 ) . If the equation of the normal at P is x α + γ β = 1 ,  then a + b is equal to…………….

3 Views|Posted 4 months ago
Asked by Shiksha User
1 Answer
R
4 months ago

f ' ( x ) = 4 x 2 1 x so f (x) is decreasing in ( 0 , 1 2 ) a n d ( 1 2 , ) a = 1 2  

Tangent at y2 = 2x is y = mx + 1 2 m it is passing through (4, 3) therefore we get m = 1 2 o r 1 4  

So tangent may be  y = 1 2 x + 1 o r y = 1 4 x + 2 b u t y = 1 2 x + 1  passes through (-2, 0) so rejected.

Equation of normal  x 9 + y 3 6 = 1  

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

It's difficult but in some colleges you may can get 

  a + 5 b  is collinear with c  

  a + 5 b = c           …(1)

b + 6 c is collinear with a  

⇒   b + 6 c = μ a               …(2)

From (1) and (2)

  b + 6 c = μ ( λ c 5 b )          

-> ( 1 + 5 μ ) b + ( 6 λ μ ) c = 0

? b and c

( s i n x c o s x ) s i n 2 x t a n x ( s i n 3 x + c o s 3 x ) d x

( s i n x c o s x ) s i n x c o s x s i n 3 x + c o s 3 x d x , put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt

-> 1 3 d t t

= l n t 3 + c

= l n | s i n 3 x + c o s 3 x | 3 + c

             

           

...Read more

f ( x ) = ( 2 x + 2 x ) t a n x t a n 1 ( 2 x 2 3 x + 1 ) ( 7 x 2 3 x + 1 ) 3

f ( x ) = ( 2 x + 2 x ) . t a n x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3

f ' ( x ) = ( 2 x + 2 x ) . s e c 2 x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3 + t a n x . ( Q ( x ) )

f ' ( 0 ) = 2 . 1 π 4 . 1

= π

 

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths Applications of Derivatives 2025

Maths Applications of Derivatives 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering