Urban infrastructure – bridges, roads, railways, pipelines, power transmission towers and so on – must be inspected regularly to operate safely. Imagine if we used advanced technologies available to us, such as wireless sensors, mobile apps and machine learning, to remotely inspect and maintain this infrastructure. This could eliminate the need for regular daily inspections, save time and money for engineers and asset owners, and reduce the risks of working on job sites.
Everyone has experience of working with smart devices such as mobile phones and iPads. Using these technologies to perform technical and engineering work is a game-changer. We have been developing “digital twins” – 3D-visualisation of in-service infrastructure – to monitor infrastructure performance under various service conditions and make intelligent maintenance decisions.
The digital model is the twin of the real infrastructure. Wireless sensors on the structure transfer performance data to our computer. We can see the performance of the infrastructure in real-time online.
This is extremely useful for engineers who need to regularly monitor the performance of infrastructure. They make critical maintenance decisions about which structural elements need to be repaired or replaced, and when this must be done, to ensure the infrastructure is safe.
Digital twins are essentially a digital replica or a virtual model of a process, product or service. The concept of creating digital twins is still relatively new for civil and infrastructure engineers.
In the Netherlands, digital twins are being developed for operation at the Port of Rotterdam. A team at the Norwegian University of Science and Technology is working on a digital model of an operating crane.
To develop digital twins for intelligent infrastructure maintenance we must integrate a variety of disciplines. These include 3D visualisation, wireless technology, structural engineering and Internet of Things. The output is a digital model of the physical infrastructure, which can be seen on a PC, tablet or mobile phone.
Looking at their smart device at home or in the office, an engineer can observe all deformations, deflections, cracks or even stresses due to various loads (such as traffic or wind). The intelligent digital twin model can also suggest appropriate maintenance decisions.
Digitalising the way we look after our infrastructure can make the process more accurate and less costly in the long term than traditional labour-intensive practices. Using a digital twin is expected to produce cost savings of 20-30%. Given the huge costs of monitoring infrastructure – in the US, bridge inspections alone cost US$1.35 billion a year – the potential savings are huge.
Based on the passage, the ultimate vision for the digital twin is to:
Urban infrastructure – bridges, roads, railways, pipelines, power transmission towers and so on – must be inspected regularly to operate safely. Imagine if we used advanced technologies available to us, such as wireless sensors, mobile apps and machine learning, to remotely inspect and maintain this infrastructure. This could eliminate the need for regular daily inspections, save time and money for engineers and asset owners, and reduce the risks of working on job sites.
Everyone has experience of working with smart devices such as mobile phones and iPads. Using these technologies to perform technical and engineering work is a game-changer. We have been developing “digital twins” – 3D-visualisation of in-service infrastructure – to monitor infrastructure performance under various service conditions and make intelligent maintenance decisions.
The digital model is the twin of the real infrastructure. Wireless sensors on the structure transfer performance data to our computer. We can see the performance of the infrastructure in real-time online.
This is extremely useful for engineers who need to regularly monitor the performance of infrastructure. They make critical maintenance decisions about which structural elements need to be repaired or replaced, and when this must be done, to ensure the infrastructure is safe.
Digital twins are essentially a digital replica or a virtual model of a process, product or service. The concept of creating digital twins is still relatively new for civil and infrastructure engineers.
In the Netherlands, digital twins are being developed for operation at the Port of Rotterdam. A team at the Norwegian University of Science and Technology is working on a digital model of an operating crane.
To develop digital twins for intelligent infrastructure maintenance we must integrate a variety of disciplines. These include 3D visualisation, wireless technology, structural engineering and Internet of Things. The output is a digital model of the physical infrastructure, which can be seen on a PC, tablet or mobile phone.
Looking at their smart device at home or in the office, an engineer can observe all deformations, deflections, cracks or even stresses due to various loads (such as traffic or wind). The intelligent digital twin model can also suggest appropriate maintenance decisions.
Digitalising the way we look after our infrastructure can make the process more accurate and less costly in the long term than traditional labour-intensive practices. Using a digital twin is expected to produce cost savings of 20-30%. Given the huge costs of monitoring infrastructure – in the US, bridge inspections alone cost US$1.35 billion a year – the potential savings are huge.
Based on the passage, the ultimate vision for the digital twin is to:
Option 1 -
To develop new recommendations, roadmaps, and next-generation vehicles
Option 2 -
To gather data about real-time status and working conditions.
Option 3 -
To create, test and build our equipment in a virtual environment.
Option 4 -
To open new ways to improve the work-related to construction.
-
1 Answer
-
Correct Option - 3
Detailed Solution:Only third option, constitutes the ultimate vision for the introduction of digital twin concept.
Nothing has been specified about the vehicles and working condition of the engineers.
Similar Questions for you
Option A and C are misinterpreted facts and Option D specifically talks about its usage. The true meaning has been conveyed in the second option which is more near to author's understanding as per the passage.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 681k Reviews
- 1800k Answers