15. A factory manufacturers two types of screws, A and B. Each type of screw requires the use of two machines, an automatic and a hand operated. It takes 4 minutes on the automatic and 6 minutes on hand operated machines to manufacture a package of screw A, while it takes 6 minutes on automatic and 3 minutes on hand operated machines to manufacture a package of screws B. Each machine is available for at the most 4 hours on any day. The manufacturer can sell a package of screws A at a profit of ?. 7 and screws B at a profit of ?. 10. Assuming that he can sell all the screws he manufactures, how many packages of each type should the factory owner produce a day in order to maximize his profit? Determine the maximum profit.

0 2 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • V

    Answered by

    Vishal Baghel | Contributor-Level 10

    4 months ago

    Let the factory manufacture x screws of type A and y screws of type B on each day. Therefore,

    x ≥ 0 and y ≥ 0

    The given information can be compiled in a table as follows.

     

    Screw A

    Screw B

    Availability

    Automatic Machine (min)

    4

    6

    4 × 60 =240

    Hand Operated Machine (min)

    6

    3

    4 × 60 =240

    The profit on a package of screws A is Rs 7 and on the package of screws B is Rs 10. Therefore, the constraints are

    4x + 6y  240

    6x + 3y  240

    Total profit, Z=7x +10y

    The mathematical formulation of the given problem is

    Maximize Z=7x +10y (1)

    subject to the constraints,

    4x + 6y  240      ....(2)

    6x + 3y  240     .....(3)

    x, y  0  (4)

    The feasible region determined by the system of constraints is

    The corner points are A (40, 0), B (30, 20), and C (0, 40).

    The values of Z at these corner points are as follows.

    The maximum value of Z is 410 at

    ...more

Similar Questions for you

A
alok kumar singh

Δ | 3 2 k 2 4 2 1 2 1 | = | 3 2 k 0 8 0 1 2 1 | , [ R 2 R 1 2 R 3 ]

= -8 (-3 + k)

For inconsistent Δ = 0 k = 3  

Δ x = | 1 0 2 k 6 4 2 5 m 2 1 | = 3 2 4 0 m 0 m 4 5              

V
Vishal Baghel

  l = π 2 π 2 ( [ x ] + [ s i n x ] ) d x . (i)

I = π 2 π 2 ( [ x ] + [ s i n x ] ) d x . (ii)

by using property ( a b f ( x ) d x = a b f ( a + b x ) d x )

Adding (i) and (ii) we get 2l = π 2 π 2 ( 2 ) d x = 2 π l = π

A
alok kumar singh

l n , m = 0 1 2 x n x m 1 d x , m , n N , n > m

l 6 + i , 3 l 3 + i , 3

A = 1 2 5 [ 1 5 1 5 1 5 0 1 1 2 1 1 2 0 0 1 2 8 ] = B 3 2

| A | = ( 1 3 2 ) 3 | B | = 1 1 0 5 . 2 1 9

V
Vishal Baghel

α + β + γ = 2 π

Δ = | 1 c o s γ c o s β c o s γ 1 c o s α c o s β c o s α 1 |

= 1 c o s 2 α c o s 2 β c o s 2 γ + 2 c o s α . c o s β . c o s γ

= c o s γ c o s ( α β ) + c o s γ c o s ( α β ) = 0

V
Vishal Baghel

Given 2x + y – z = 3         . (i)

x – y – z = α        . (ii)

3x + 3y + βz = 3                . (iii)

(i) x 2 – (ii) – (iii) – (1 + β) z = 3 - α

For infinite solution 1 + β = 0 = 3 - α

=> α = 3, β = -1

So, α + β - αβ = 5

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post