28. A fair coin with 1 marked on one face and 6 on the other and a fair die are bothtossed. find the probability that the sum of numbers that turn up is (i) 3 (ii) 12
28. A fair coin with 1 marked on one face and 6 on the other and a fair die are bothtossed. find the probability that the sum of numbers that turn up is (i) 3 (ii) 12
-
1 Answer
-
28. The sample space of the experiment is
S = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5) (6, 6)}
So, n (S) = 12.
(i) Let E be event such that sum of numbers that turn up is 3. Then,
E = { (1, 2)}
So, n (E) = 1
P (E) = .
(ii) Let F be event such that sum of number than turn up is 12. Then,
F = { (6, 6)}
So, n (F) = 1
P (F) = .
Similar Questions for you
3, 4, 5, 5
In remaining six places you have to arrange
3, 4, 5,5
So no. of ways
Total no. of seven digits nos. =
Hence Req. prob.
f (x) = x? – 4x + 1 = 0
f' (x) = 4x³ – 4
= 4 (x–1) (x²+1+x)
=> Two solution
Let z be equal to (x + iy)
(x + iy) + (x – iy) = (x + iy)2 (i + 1)
Equating the real & in eg part.
(i) & (ii)
4xy = -2x Þ x = 0 or y =
(for x = 0, y = 0)
For y =
x2
x =
=
of
=
When
gives c = 1
So
sum of all solutions =
Hence k = 42
Each element of ordered pair (i, j) is either present in A or in B.
So, A + B = Sum of all elements of all ordered pairs {i, j} for and
= 20 (1 + 2 + 3 + … + 10) = 1100
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers