36. Fill in the blanks in following table:
P(A) P(B) P(A ∩ B) P(A ∪ B)
(i)
. . .
(ii) 0.35 . . . 0.25 0.6
(iii) 0.5 0.35 . . . 0.7
36. Fill in the blanks in following table:
P(A) P(B) P(A ∩ B) P(A ∪ B)
(i) . . .
(ii) 0.35 . . . 0.25 0.6
(iii) 0.5 0.35 . . . 0.7
-
1 Answer
-
36. (i) Given P (A) =
P (B) =
P (A∩B) =
So, P (A∪B) = P (A) + P (B) – P (A∩B)
P (A∪B) =
(ii) Given P (A) = 0.35
P (B) =?
P (A∩B) = 0.25
P (A∪B) = 0.6
So, P (A∪B) = P (A) + P (B) – P (A∩B)
0.6 = 0.35 + P (B) – 0.25
P (B) = 0.6 – 0.35 + 0.25
P (B) = 0.5
(iii) Given P (A) = 0.5
P (B) = 0.35
P (A∩B) =?
P (A∪B) = 0.7
So, P (A∪B) = P (A) + P (B) – P (A∩B)
0.7 = 0.5 + 0.35 – P (A∩B)
P (A∩B) = 0.5 + 0.35 – 0.7
P (A∩B) = 0.15
Similar Questions for you
3, 4, 5, 5
In remaining six places you have to arrange
3, 4, 5,5
So no. of ways
Total no. of seven digits nos. =
Hence Req. prob.
f (x) = x? – 4x + 1 = 0
f' (x) = 4x³ – 4
= 4 (x–1) (x²+1+x)
=> Two solution
Let z be equal to (x + iy)
(x + iy) + (x – iy) = (x + iy)2 (i + 1)
Equating the real & in eg part.
(i) & (ii)
4xy = -2x Þ x = 0 or y =
(for x = 0, y = 0)
For y =
x2
x =
=
of
=
When
gives c = 1
So
sum of all solutions =
Hence k = 42
Each element of ordered pair (i, j) is either present in A or in B.
So, A + B = Sum of all elements of all ordered pairs {i, j} for and
= 20 (1 + 2 + 3 + … + 10) = 1100
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers