56. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
56. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
-
1 Answer
-
56. L.H.S = sin x + sin 3x + sin 5x + sin 7x.
= (sin x + sin 7x) + (sin 3x + sin 5x)
Using,
sin A + sin B = 2 sin cos
L.H.S. = 2. Sin cos + 2 sin cos
= 2 sin cos + 2 sin cos
= 2 sin 4x cos 3x + 2 sin 4x cosx.[ cos (-x) = cosx]
= 2 sin 4x[cos 3x + cosx]
Using cos A + cos B = 2 cos cos
So, L.H.S. = 2 sin 4x
= 2 sin 4x
= 4 sin 4x. cos 2x cosx = R.H.S.
Similar Questions for you
16cos2θ + 25sin2θ + 40sinθ cosθ = 1
16 + 9sin2θ + 20sin 2θ = 1
+ 20sin 2θ = 1
– 9cos 2θ + 40sin 2θ = – 39
48tan2θ + 80tanθ + 30 = 0
24tan2θ + 40tanθ + 15 = 0
-> ,
So will be rejected as
Option (4) is correct.
12x =
is the solution of above equation.
Statement 1 is true
f(0) = – 1 < 0
one root lies in , one root is which is positive. As the coefficients are real, therefore all the roots must be real.
Statement 2 is false.
tan2 A = tan B tan C
It is only possible when A = B = C at x = 1
A = 30°, B = 30°, C = 30°
a = sin−1 (sin5) = 5 − 2π
and b = cos−1 (cos5) = 2π − 5
∴ a2 + b2 = (5 − 2π)2 + (2π − 5)2
= 8π2 − 40π + 50
sin 2 + tan 2 > 0
Let tan = x
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers