57. Let f: W → W be defined as f(n) = n − 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

0 26 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • V

    Answered by

    Vishal Baghel | Contributor-Level 10

    4 months ago

    It is given that:

    f:WW is defined as f(n)={n1,if.n,oddn+1,if.n,even

    One-one:

    Let, f(n)=f(m).

    It can be observed that if n is odd and m is even, then we will have n-1=m+1.

    nm=2

    However, the possibility of n being even and m being odd can also be ignored under a similar argument.

     Both n and m must be either odd or even.

    Now, if both n and m are odd, then we have:

    f(n)=f(m)n1=m1n=m

    Again, if both n and m are even, then we have:

    f(n)=f(m)n+1=m+1n=m

    f is one-one.

    It is clear that any odd number 2r+1 in co-domain N is the image of 2r in domain N and any even 2r in co-domain N is the image of 2r+1 in domain N.

    f is onto.

    Hence, f is an invertible function.

    Let us define g:WW as:

    g(m)={m+1,if.n,evenm1,if.n,odd

    Now, when n is odd:

    gof(n)=g(f(n))=g(n1)=n1+1=n

    And, when

    ...more

Similar Questions for you

A
alok kumar singh

R1 = { (1, 1) (1, 2), (1, 3)., (1, 20), (2, 2), (2, 4). (2, 20), (3, 3), (3, 6), . (3, 18),
(4, 4), (4, 8), . (4, 20), (5, 5), (5, 10), (5, 15), (5, 20), (6, 6), (6, 12), (6, 18), (7. 7),
(7, 14), (8, 8), (8, 16), (9, 9), (9, 18), (10, 10), (10, 20), (11, 11), (12, 12), . (20, 20)}

n (R1) = 66

R2 = {a is integral multiple of b}

So n (R1 – R2) = 66 – 20 = 46

as R1 Ç R2 = { (a, a) : a Î s} = { (1, 1), (2, 2), ., (20, 20)}

A
alok kumar singh

g o f ( x ) = { f ( x ) , f ( x ) < 0 f ( x ) , f ( x ) > 0

= { e l n x = x ( 0 , 1 ) e x ( , 0 ) l n x ( 1 , )

Therefore, gof (x) is many one and into

A
alok kumar singh

  ?  R is symmetric relation

⇒   (y, x) R V (x, y) R

(x, y)  R 2x = 3y and (y, x) R 3x = 2y

Which holds only for (0, 0)

Which does not belongs to R.

Value of n = 0

A
alok kumar singh

f is increasing function

x < 5x < 7x

f (x) < f (5x) < f (7x)

  f ( x ) f ( x ) < f ( 5 x ) f ( x ) < f ( 7 x ) f ( x )           

l i m x f ( x ) f ( x ) < l i m x f ( 5 x ) f ( x ) < l i m x f ( 7 x ) f ( x )             

-> 1 < l i m x f ( 5 x ) f ( x ) < 1 l i m x f ( 5 x ) f ( x ) = 1

l i m x ( f ( 5 x ) f ( x ) 1 ) = 0            

A
alok kumar singh

Given f (k) = { k + 1 , k i s o d d k , k i s e v e n

  ? g : A A           such that g (f (x) = f (x)

Case I : If x is even then g (x) = x . (i)

Case II : If x is odd then g (x + 1) = x + 1 . (ii)

From (i) & (ii), g (x) = x, when x is even

So total no. of functions = 105 × 1 = 105

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post