7. Minimise and Maximise Z = 5x + 10 y subject to x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0.
7. Minimise and Maximise Z = 5x + 10 y subject to x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0.
-
1 Answer
-
Minimize and Maximise
Subject to
The corresponding equation of the given inequalities are
The graph of the inequalities in shown.
The shaded founded region ABCD is the feasible region with the corner points
The value of Z a these corner points are
The minimum value of Z is 300 at (60,0) and the maximum value of Z is 600 at all the points on the line segment joining B (120,0) and C (60,30).
Similar Questions for you
= -8 (-3 + k)
For inconsistent
. (ii)
by using property
Adding (i) and (ii) we get 2l =
Given 2x + y – z = 3 . (i)
x – y – z = α . (ii)
3x + 3y + βz = 3 . (iii)
(i) x 2 – (ii) – (iii) – (1 + β) z = 3 - α
For infinite solution 1 + β = 0 = 3 - α
=> α = 3, β = -1
So, α + β - αβ = 5
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers