Area under the curve x2 + y2 = 169 and below the line 5x – y = 13 is
Area under the curve x2 + y2 = 169 and below the line 5x – y = 13 is
Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mn>9</mn> <mi>π</mi> </mrow> <mrow> <mn>4</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>6</mn> <mn>5</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mn>9</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mi>s</mi> <mi>i</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mn>1</mn> <mn>2</mn> </mrow> <mrow> <mn>1</mn> <mn>3</mn> </mrow> </mfrac> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mn>9</mn> <mi>π</mi> </mrow> <mrow> <mn>4</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mn>5</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mn>9</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mi>s</mi> <mi>i</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mn>1</mn> <mn>2</mn> </mrow> <mrow> <mn>1</mn> <mn>3</mn> </mrow> </mfrac> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mn>9</mn> </mrow> <mrow> <mn>4</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>6</mn> <mn>5</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mn>9</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mi>s</mi> <mi>i</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mn>1</mn> <mn>3</mn> </mrow> <mrow> <mn>1</mn> <mn>4</mn> </mrow> </mfrac> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mn>9</mn> <mi>π</mi> </mrow> <mrow> <mn>4</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mn>5</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mn>6</mn> <mn>9</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> <mi>s</mi> <mi>i</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mfrac> <mrow> <mn>1</mn> <mn>3</mn> </mrow> <mrow> <mn>1</mn> <mn>4</mn> </mrow> </mfrac> </mrow> </math> </span></p>
2 Views|Posted 3 months ago
Asked by Shiksha User
1 Answer
A
Answered by
3 months ago
Correct Option - 1
Detailed Solution:

Similar Questions for you
It's difficult but in some colleges you may can get
is collinear with
⇒ = …(1)
is collinear with
⇒ …(2)
From (1) and (2)
->
and
, put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt
->
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
66K
Colleges
|
1.2K
Exams
|
6.8L
Reviews
|
1.8M
Answers
Learn more about...

Maths Application of Integrals 2025
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
or
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
or
See what others like you are asking & answering