Consider the following statements:

P : Ramu is intelligent.

Q : Ramu is rich.

R : Ramu is not honest.

The negation of the statement “Ramu is intelligent and honest if and only if Ramu is not rich” can be expressed as

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>P</mi> <mo>∧</mo> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>R</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> <mo>∨</mo> <mi>R</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>P</mi> <mo>∧</mo> <mi>R</mi> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mo>∨</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> <mo>∨</mo> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>R</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>P</mi> <mo>∧</mo> <mi>R</mi> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> <mo>∨</mo> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>R</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>P</mi> <mo>∧</mo> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>R</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mo>∨</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>Q</mi> </mrow> <mo>)</mo> </mrow> <mo>∧</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>∼</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> <mo>∨</mo> <mi>R</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
2 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
P
6 months ago
Correct Option - 4
Detailed Solution:

P : Ramu is intelligent

Q : Ramu is rich

R : Ramu is not honest

Give statement, “Ramu is intelligent and honest if any only if Ramu is not rich”

= (PR)Q

So, negation of the statement is

[ (PR)Q]

= ( (PR)Q) (Q (PR))

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

Case – I Δ  

              ( p q ) ( ( p q ) r )  

              it can be false if r is false,

              so not a tautology

   &n

...Read more

pva ( r v p )

( p q ) ( r v p )

its negation as asked in question

( p q ) ( p r )

= ( p p r ) ( q r p )

= ( p r p ) [ a s p p i s f a l s e ]

2 0 2 1 2 mod (7)

( 2 0 2 1 ) 2 0 2 3 ( 2 ) 2 0 2 3 m o d ( 7 )   …… (i)

Now,   ( 2 ) 3 1 m o d ( 7 )  

( 2 ) 2 0 2 3 ( 2 ) m o d ( 7 ) 5 m o d ( 7 )       ……. (ii)

(i) & (ii)

( 2 0 2 1 ) 2 0 2 3 5 m o d ( 7 )  

 Remainder = 5

...Read more

( p q ) q = ( p q ) q i s :

( ( P Q ) ) q is equivalent to ( p q )

...Read more

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths NCERT Exemplar Solutions Class 12th Chapter Two 2025

Maths NCERT Exemplar Solutions Class 12th Chapter Two 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering