How do NCERT Solutions help in competitive exam preparation for 3D Geometry?

0 1 View | Posted 5 months ago
Asked by Aayush Kumari

  • 1 Answer

  • H

    Answered by

    Himanshi Singh

    5 months ago

    NCERT Solutions for 3D Geometry serves as a mathematical foundation developer for all the students. All competition exam aspirant must use NCERT Textbooks and its solutions for better understanding for fundamental concepts in 3D Geometry. Having a proper understanding of foundation knowledge of chapter is important for competitive exams like JEE and NEET. 

Similar Questions for you

A
alok kumar singh

π 2 π 2 ( x 2 c o s x 1 + π 2 + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) d x = π 4 ( π + α ) 2

0 π 2 { ( x 2 c o s x 1 + π x + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) + ( x 2 c o s x 1 + π x + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) } d x

= π 4 ( π + α ) 2

0 π 2 ( x 2 c o s x + 1 + s i n 2 x ) d x = π 4 ( π + α ) 2

0 π 2 x 2 c o s x d x + 0 π 2 ( 1 + s i n 2 x ) d x = π 4 ( π + α ) 2 ....(1)

Let I 1 = 0 π 2 ( 1 + s i n 2 x ) d x

I 1 = 0 π 2 1 d x + 0 π 2 ( 1 c o s 2 x 2 ) d x

I 1 = π 2 + 1 2 [ π 2 + 0 ]

I 1 = 3 π 4

Let I 2 = 0 π 2 x 2 c o s x d x

I 2 = [ x 2 ( s i n x ) 2 x c o s x d x ] 0 π 2

I 2 = [ x 2 ( s i n x ) 2 x s i n x ] 0 π 2

I 2 = [ x 2 s i n x 2 ( x ( c o s x ) + c o s x ) ] 0 π 2

I 2 = [ x 2 s i n x 2 ( x c o s x + s i n x ) ] 0 π 2

I 2 = ( π 2 4 2 )

Put l1 and l2 in (1)

π 2 4 2 + 3 π 4

π 2 4 + 3 π 4 2

π 4 ( π + 3 ) 2

α = 3

A
alok kumar singh

Given | a | = 1 , | b | = 4 , a b = 2

c = 2 ( a × b ) 3 b  

Dot product with  a on both sides

c a = 6 ... (1)

Dot product with  b  on both sides

b c = 4 8 ... (2)

c c = 4 | a × b | 2 + 9 | b | 2

| c | 2 = 4 [ | a | 2 | b | 2 ( a b ) 2 ] + 9 | b | 2

| c | 2 = 4 [ ( 1 ) ( 4 ) 2 ( 4 ) ] + 9 ( 1 6 )

| c | 2 = 4 [ 1 2 ] + 1 4 4

| c | 2 = 4 8 + 1 4 4

| c | 2 = 1 9 2

c o s θ = b c | b | | c |

c o s θ = 4 8 1 9 2 4

c o s θ = 4 8 8 3 4

c o s θ = 3 2 3

c o s θ = 3 2 θ = c o s 1 ( 3 2 )

 

A
alok kumar singh

(a – 1) × 2 + (b – 2) × 5 + (g – 3) × 1 = 0

2a + 5b + g – 15 = 0

Also, P lie on line

a + 1 = 2λ

b – 2 = 5λ

g – 4 = λ

2 (2λ – 1) + 5 (5λ + 2) + λ + 4 – 15 = 0

4λ + 25λ + λ – 2 + 10 + 4 – 15 = 0

30λ – 3 = 0

λ = 1 1 0  

a + b + g = (2λ – 1) + (5λ + 2) + (λ + 4)

= 8 λ + 5 = 8 1 0 + 5 = 5 . 8

A
alok kumar singh

Take x 1 2 = y 2 3 = z 3 4 = λ  

x = 2λ + 1, y = 3λ + 2, z = 4λ + 3

  A B  = (α − 2)  i ^ + (β − 3) j ^ + (γ − 4) k ^  

Now,

(α − 2)  2 + (β − 3) 3 + (γ − 4) 4 = 0

2α − 4 + 3β − 9 + 4γ −16 = 0

2α + 3β + 4γ = 29

V
Vishal Baghel

L 1 = x λ 1 = y 1 2 1 2 = z 1 2

S D = | 2 λ + 3 ( 2 λ + 1 2 ) + λ | 1 4 = | 5 λ + 3 2 | 1 4

5 λ + 3 2 = 7 2 5 λ = 5 λ = 1

| λ | = 1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post