If the feasible region for a LPP is unbounded, maximum or minimum of the objective function
may or may not exist.
If the feasible region for a LPP is unbounded, maximum or minimum of the objective function may or may not exist.
-
1 Answer
-
The following statement is true.
Similar Questions for you
= -8 (-3 + k)
For inconsistent
. (ii)
by using property
Adding (i) and (ii) we get 2l =
Given 2x + y – z = 3 . (i)
x – y – z = α . (ii)
3x + 3y + βz = 3 . (iii)
(i) x 2 – (ii) – (iii) – (1 + β) z = 3 - α
For infinite solution 1 + β = 0 = 3 - α
=> α = 3, β = -1
So, α + β - αβ = 5
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers