If vectors are collinear, then a possible unit vector parallel to the vector is:
If vectors are collinear, then a possible unit vector parallel to the vector is:
Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <mo>+</mo> <mover accent="true"> <mi>j</mi> <mo>^</mo> </mover> <mo>−</mo> <mover accent="true"> <mi>k</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mover accent="true"> <mi>j</mi> <mo>^</mo> </mover> <mo>+</mo> <mover accent="true"> <mi>k</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mroot> <mrow> <mn>3</mn> </mrow> <mrow></mrow> </mroot> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <mo>−</mo> <mover accent="true"> <mi>j</mi> <mo>^</mo> </mover> <mo>+</mo> <mover accent="true"> <mi>k</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mroot> <mrow> <mn>2</mn> </mrow> <mrow></mrow> </mroot> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>i</mi> <mo>^</mo> </mover> <mo>−</mo> <mover accent="true"> <mi>j</mi> <mo>^</mo> </mover> </mrow> <mo>)</mo> </mrow> </mrow> </math> </span></p>
6 Views|Posted 4 months ago
Asked by Shiksha User
1 Answer
A
Answered by
4 months ago
Correct Option - 3
Detailed Solution:
given are collinear then
Since are not collinear so
Hence possible unit vector parallel to it be for =
Similar Questions for you
It's difficult but in some colleges you may can get
is collinear with
⇒ = …(1)
is collinear with
⇒ …(2)
From (1) and (2)
->
and
, put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt
->
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers
Learn more about...
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
or
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
or
See what others like you are asking & answering
