If z = cos 20° + isin 20, then |z + 2z2 + 3z3 + ... + 18z18|-1 is:
If z = cos 20° + isin 20, then |z + 2z2 + 3z3 + ... + 18z18|-1 is:
Option 1 -
½ sin 10°
Option 2 -
⅓ sin 10°
Option 3 -
⅓ sin 20°
Option 4 -
⅔ sin 20°
-
1 Answer
-
Correct Option - 2
Detailed Solution:Let S = z + 2z² + 3z³ + . + 18z¹?
zS = z² + 2z³ + . + 18z¹?
(1 − z)S = z + z² + z³ + . - 18z¹?
(1 − z)S = z (z¹? - 1)/ (z-1) - 18z¹?
Now z = cos 20° + isin 20° ⇒ z¹? = 1
Also |z| = 1
⇒ (1 − z)S = -18z
⇒ S = -18z / (1-z)
|S|? ¹ = | (1-z)/ (-18z)| = |1-z|/18
= (1/18) |1 – cos 20° - isin 20°| = (1/18) |2sin² 10° — 2isin 10°cos 10°|
= (1/18) |2sin 10° (sin 10° – icos 10°)| = (1/9)sin 10°
Similar Questions for you
...(1)
–2α + β = 0 …(2)
Solving (1) and (2)
a = 1
b = 2
-> a + b = 3
|z| = 0 (not acceptable)
|z| = 1
|z|2 = 1
Given : x2 – 70x + l = 0
->Let roots be a and b
->b = 70 – a
->= a (70 – a)
l is not divisible by 2 and 3
->a = 5, b = 65
->
z1 + z2 = 5
⇒ 20 + 15i = 125 – 15z1z2
⇒ 3z1z2 = 25 – 4 – 3i
3z1z2 = 21– 3i
z1⋅z2 = 7 – i
(z1 + z2)2 = 25
= 11 + 2i
= 121 − 4 + 44i
⇒
⇒ = 117 + 44i − 2(49 −1−14i )
= 21 + 72i
⇒
a = 1 > 0 and D < 0
4 (3k – 1)2 – 4 (8k2 – 7) < 0
K = 3
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers