Let A = {2,3,4,5,...,30} and '~' be an equivalence relation on A×A, defined by (a,b) ~ (c,d), if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4, 3) is equal to :
Let A = {2,3,4,5,...,30} and '~' be an equivalence relation on A×A, defined by (a,b) ~ (c,d), if and only if ad = bc. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair (4, 3) is equal to :
Option 1 -
6
Option 2 -
5
Option 3 -
8
Option 4 -
7
-
1 Answer
-
Correct Option - 4
Detailed Solution:The equation of the circle is x²+y²+ax+2ay+c=0, with a<0.
x-intercept = 2√ (g² - c) = 2√ (a/2)² - c) = 2√2. So, a²/4 - c = 2 => a² = 8 + 4c - (i)
y-intercept = 2√ (f² - c) = 2√ (a² - c) = 2√5. So, a² - c = 5 => a² = 5 + c - (ii)
Equating (i) and (ii): 8 + 4c = 5 + c => 3c = -3 => c = -1.
Substituting c in (ii): a² = 5 - 1 = 4. Since a < 0, a = -2.
The equation of the circle is x² + y² - 2x - 4y - 1 = 0.
Completing the square: (x-1)² + (y-2)² = 1+4+1 = 6.
The center is (1,2) and radius is √6.
The tangent is perpendicular to the line x + 2y = 0...more
Similar Questions for you
R1 = { (1, 1) (1, 2), (1, 3)., (1, 20), (2, 2), (2, 4). (2, 20), (3, 3), (3, 6), . (3, 18),
(4, 4), (4, 8), . (4, 20), (5, 5), (5, 10), (5, 15), (5, 20), (6, 6), (6, 12), (6, 18), (7. 7),
(7, 14), (8, 8), (8, 16), (9, 9), (9, 18), (10, 10), (10, 20), (11, 11), (12, 12), . (20, 20)}
n (R1) = 66
R2 = {a is integral multiple of b}
So n (R1 – R2) = 66 – 20 = 46
as R1 Ç R2 = { (a, a) : a Î s} = { (1, 1), (2, 2), ., (20, 20)}


⇒ (y, x) ∈ R V (x, y) ∈ R
(x, y) ∈ R ⇒ 2x = 3y and (y, x) ∈ R ⇒ 3x = 2y
Which holds only for (0, 0)
Which does not belongs to R.
∴ Value of n = 0
f is increasing function
x < 5x < 7x

f (x) < f (5x) < f (7x)
->
Given f (k) =
Case I : If x is even then g (x) = x . (i)
Case II : If x is odd then g (x + 1) = x + 1 . (ii)
From (i) & (ii), g (x) = x, when x is even
So total no. of functions = 105 × 1 = 105
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers