Let a = i + j + k, b and c = j - k be three vectors such that a * b = c and a . b = 1. If the length of projection vector of the vector b on the vector a * c is l, then the value of 3l² is equal to ________.
Let a = i + j + k, b and c = j - k be three vectors such that a * b = c and a . b = 1. If the length of projection vector of the vector b on the vector a * c is l, then the value of 3l² is equal to ________.
a*b=c ⇒ a.c=0, b.c=0.
|c|² = |a|²|b|² - (a.b)² = (3)|b|² - 1. |c|=√2. So |b|²=1, |b|=1.
Projection of b on a*c.
a*c = a* (a*b) = (a.b)a - (a.a)b = a - 3b.
|a-3b|² = |a|²+9|b|²-6 (a.b) = 3+9-6 = 6.
l = |b. (a-3b)|/|a-3b| = | (a.b)-3|b|²|/√6 = |1-3|/√6 = 2/√6.
3l² = 3 (4/6) = 2.
Similar Questions for you
6.00
b·a = c·a
|a+b-c|² = |a|²+|b|²+|c|²+2(a·b - b·c - a·c)
= 4+16+16+2(a·b - 0 - a·b) = 36
⇒ |a+b-c| = 6
(a+3b). (7a-5b) = 7|a|² - 5ab + 21ab - 15|b|² = 7|a|²+16ab-15|b|²=0.
(a-4b). (7a-2b) = 7|a|² - 2ab - 28ab + 8|b|² = 7|a|²-30ab+8|b|²=0.
Subtracting: 46ab - 23|b|² = 0 ⇒ 2ab = |b|².
Substituting: 7|a|² + 8|b|² - 15|b|² = 0 ⇒ 7|a|² = 7|b|² ⇒ |a|=|b|.
cosθ = ab/ (|a|b|) = ab/|b|² = (1/2)|b|²/|b|² = 1/2.
θ
|a × b|² + |a . b|² = |a|²|b|²
8² + (a . b)² = 2² * 5²
64 + (a . b)² = 100
(a . b)² = 36
a . b = 6 (since angle seems acute from options, but could be -6).
a = i + j + 2k
b = -i + 2j + 3k
a + b = 3j + 5k
a . b = -1 + 2 + 6 = 7
a × b = |i, j, k; 1, 2; -1, 2, 3| = -i - 5j + 3k
(a - b) × b) = (a × b) - (b × b) =
given are collinear then
Since are not collinear so
Hence possible unit vector parallel to it be for =
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 12th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering