Let f : R ® R be defined as

f ( x ) = [ [ e x ] , x < 0 a e x + [ x 1 ] , 0 x < 1 b + [ s i n ( π x ) ] , 1 x < 2 [ e x ] c , x 2

where a, b, c  R and [t] denotes greatest integer less than or equal to t. Then, which of the following statements is true?

Option 1 - <p>There exists a, b, c &lt;!-- [if gte vml 1]><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f"> <v:stroke joinstyle="miter"/> <v:formulas> <v:f eqn="if lineDrawn pixelLineWidth 0"/> <v:f eqn="sum @0 1 0"/> <v:f eqn="sum 0 0 @1"/> <v:f eqn="prod @2 1 2"/> <v:f eqn="prod @3 21600 pixelWidth"/> <v:f eqn="prod @3 21600 pixelHeight"/> <v:f eqn="sum @0 0 1"/> <v:f eqn="prod @6 1 2"/> <v:f eqn="prod @7 21600 pixelWidth"/> <v:f eqn="sum @8 21600 0"/> <v:f eqn="prod @7 21600 pixelHeight"/> <v:f eqn="sum @10 21600 0"/> </v:formulas> <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/> <o:lock v:ext="edit" aspectratio="t"/> </v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:9pt;\\\\\\\\n height:9pt' o:ole=""> <v:imagedata src="file:///C:/Users/RAJ~1.PAN/AppData/Local/Temp/msohtmlclip1/01/clip_image001.wmz" o:title=""/> </v:shape><![endif]--&gt;&lt;!-- [if !vml]--&gt;<img ><span class="mathml" contenteditable="false"> <math> <mrow> <mo>∈</mo> </mrow> </math> </span>&lt;!--[endif]--&gt;&lt;!-- [if gte mso 9]>&lt;xml&gt; <o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1025" DrawAspect="Content" ObjectID="_1819465359"> </o:OLEObject> &lt;/xml&gt;&lt;![endif]--&gt;&nbsp;R such that f is continuous on R.</p>
Option 2 - <p>If f is discontinuous at exactly one point, then a + b + c = 1.</p>
Option 3 - <p>If f is discontinuous at exactly one point, then a + b + c <span class="mathml" contenteditable="false"> <math> <mrow> <mo>≠</mo> </mrow> </math> </span>&nbsp;1</p>
Option 4 - <p>f is discontinuous at atleast two points, for any values of a, b and c</p>
4 Views|Posted 4 months ago
Asked by Shiksha User
1 Answer
R
4 months ago
Correct Option - 3
Detailed Solution:

For x < 0 0 < ex < 1 Þ [ex] = 0

0 x < 1 a e x + [ x 1 ]  

= a e x + [ x ] 1  

= a ex – 1             b + [sin px]


f ( x ) = [ 0 x < 0 a e x 1 0 x < 1 b 1 1 x < 2 c x 2 ]  

For f to be continuous at x = 0

   a – 1 = 0 Þ a = 1

a + b + c = 1 + e + 1 e = 2 a + b + c 1  

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

It's difficult but in some colleges you may can get 

  a + 5 b  is collinear with c  

  a + 5 b = c           …(1)

b + 6 c is collinear with a  

⇒   b + 6 c = μ a               …(2)

From (1) and (2)

  b + 6 c = μ ( λ c 5 b )          

-> ( 1 + 5 μ ) b + ( 6 λ μ ) c = 0

? b and c

( s i n x c o s x ) s i n 2 x t a n x ( s i n 3 x + c o s 3 x ) d x

( s i n x c o s x ) s i n x c o s x s i n 3 x + c o s 3 x d x , put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt

-> 1 3 d t t

= l n t 3 + c

= l n | s i n 3 x + c o s 3 x | 3 + c

             

           

...Read more

f ( x ) = ( 2 x + 2 x ) t a n x t a n 1 ( 2 x 2 3 x + 1 ) ( 7 x 2 3 x + 1 ) 3

f ( x ) = ( 2 x + 2 x ) . t a n x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3

f ' ( x ) = ( 2 x + 2 x ) . s e c 2 x . t a n 1 ( 2 x 2 3 x + 1 ) . ( 7 x 2 3 x + 1 ) 3 + t a n x . ( Q ( x ) )

f ' ( 0 ) = 2 . 1 π 4 . 1

= π

 

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths NCERT Exemplar Solutions Class 11th Chapter Seven 2025

Maths NCERT Exemplar Solutions Class 11th Chapter Seven 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering