Let . Then is equal to:
Let . Then is equal to:
(put )
[Applying by parts]
Similar Questions for you
Let 2x = t then
Let tan t = y then
Let
The integral is I = ∫ [ (x²-1) + tan? ¹ (x + 1/x)] / [ (x? +3x²+1)tan? ¹ (x+1/x)] dx
This is a complex integral. The provided solution splits it into two parts:
I? = ∫ (x²-1) / [ (x? +3x²+1)tan? ¹ (x+1/x)] dx
I? = ∫ 1 / (x? +3x²+1) dx
The solution proceeds with substitutions which are hard to follow due
The problem is to evaluate the integral:
I = ∫? ¹? [x] * e^ [x] / e^ (x-1) dx, where [x] denotes the greatest integer function.
The solution breaks the integral into a sum of integrals over unit intervals:
I = ∑? ∫? ¹ n * e? / e^ (x-1) dx
= ∑? n * e? ∫? ¹ e^ (1-x) dx
= ∑? n * e? [-e^ (1-x)] from n to n+1
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths NCERT Exemplar Solutions Class 12th Chapter Seven 2025
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering
