Let O be the origin and A be the point z1 = 1 + 2i. If B is the point z2, Re(z2) < 0, such that OAB is a right angled isosceles triangle with OB as hypotenuses, then which of the following is NOT true?
Let O be the origin and A be the point z1 = 1 + 2i. If B is the point z2, Re(z2) < 0, such that OAB is a right angled isosceles triangle with OB as hypotenuses, then which of the following is NOT true?
Option 1 -
arg z2 π - tan-3 3
Option 2 -
arg(z1 – 2z2) = tan-1
Option 3 -
Option 4 -
-
1 Answer
-
Correct Option - 4
Detailed Solution:
Similar Questions for you
(2 – i) z = (2 + i) , put z = x + iy
(ii)
x + 2y = 2
(iii)
Equation of tangent x – y + 1 = 0
Solving (i) and (ii)
Perpendicular distance of point from x – y + 1 = 0 is p = r
f (x) = λ (x-2)²
⇒ 12 = λ (2)² ⇒ λ = 3
f (x) = 3 (x-2)² f (6) = 3 × 4² = 48
Kindly consider the following figure
Let z be those complex numbers which satisfy
If the maximum value of then the value of (α + β) is…….
->Represent a circle
->Represent a line X – y
So max |z + 1|2 = AQ2
Hence α + β) = 48
=
Where
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers