Let P be the plane containing the straight line x 3 9 = y + 4 1 = z 7 5  and perpendicular to the plane containing the straight lines x 2 = y 3 = z 5 a n d x 3 = y 7 = z 8 .  If d is the distance of P from the point (2, -5, 11), then d2 is equal to:

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>1</mn> <mn>4</mn> <mn>7</mn> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> </mrow> </math> </span></p>
Option 2 - <p>96</p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mrow> <mfrac> <mrow> <mn>3</mn> <mn>2</mn> </mrow> <mrow> <mn>3</mn> </mrow> </mfrac> </mrow> </math> </span></p>
Option 4 - <p>54</p>
4 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
V
6 months ago
Correct Option - 3
Detailed Solution:

Let a, b, c be direction ratios of plane containing lines

x 2 = y 3 = z 5

and

x 3 = y 7 = z 8

Equation of plane P is : 1 (x – 3) 1 (y + 4) + 2 (z – 7) = 0

x y + 2 z 2 1 = 0

Distance from point (2, 5, 11) is

d = | 2 + 5 + 2 2 2 | 6

d 2 = 3 2 3

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

π 2 π 2 ( x 2 c o s x 1 + π 2 + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) d x = π 4 ( π + α ) 2

0 π 2 { ( x 2 c o s x 1 + π x + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) + ( x 2 c o s x 1 + π x + 1 + s i n 2 x 1 + e ( s i n x ) 2 0 2 3 ) } d x

= π 4 ( π + α ) 2

0 π 2 ( x 2 c o s x + 1 + s i n 2 x ) d x = π 4 ( π + α ) 2

0 π 2 x 2 c o s x d x + 0 π 2 ( 1 + s i n 2 x ) d x = π 4 ( π + α ) 2 ....(1)

Let I 1 = 0 π 2 ( 1 + s i n 2 x ) d x

I 1 = 0 π 2 1 d x + 0 π 2 ( 1 c o s 2 x 2 ) d x

I 1 = π 2 + 1 2 [ π 2 + 0 ]

I 1 = 3 π 4

Let I 2 = 0 π 2 x 2 c o s x d x

I 2 = [ x 2 ( s i n x ) 2 x c o s x d x ] 0 π 2

I 2 = [ x 2 ( s i n x ) 2 x s i n x ] 0 π 2

I 2 = [ x 2 s i n x 2 ( x ( c o s x ) + c o s x ) ] 0 π 2

I 2 = [ x 2 s i n x 2 ( x c o s x + s i n x ) ] 0 π 2

I 2 = ( π 2 4 2 )

Put l1 and l2 in (1)

π 2 4 2 + 3 π 4

π 2 4 + 3 π 4 2

π 4 ( π + 3 ) 2

α = 3

Given | a | = 1 , | b | = 4 , a b = 2

c = 2 ( a × b ) 3 b  

Dot product with  a on both sides

c a = 6 ... (1)

Dot product with  b  on both sides

b c = 4 8 ... (2)

c c = 4 | a × b | 2 + 9 | b | 2

| c | 2 = 4 [ | a | 2 | b | 2 ( a b ) 2 ] + 9 | b | 2

| c | 2 = 4 [ ( 1 ) ( 4 ) 2 ( 4 ) ] + 9 ( 1 6 )

| c | 2 = 4 [ 1 2 ] + 1 4 4

| c | 2 = 4 8 + 1 4 4

| c | 2 = 1 9 2

c o s θ = b c | b | | c |

c o s θ = 4 8 1 9 2 4

c o s θ = 4 8 8 3 4

c o s θ = 3 2 3

c o s θ = 3 2 θ = c o s 1 ( 3 2 )

 

...Read more

(a – 1) × 2 + (b – 2) × 5 + (g – 3) × 1 = 0

2a + 5b + g – 15 = 0

Also, P lie on line

a + 1 = 2λ

b – 2 = 5λ

g – 4 = λ

2 (2λ – 1) + 5 (5λ + 2) + λ + 4 – 15 = 0

4λ + 25λ + λ – 2 + 10 + 4 – 15 = 0

30λ – 3 = 0

λ = 1 1 0  

a + b + g = (2λ – 1) + (5λ + 2) + (λ + 4)

= 8 λ + 5 = 8 1 0 + 5 = 5 . 8

...Read more

Take x 1 2 = y 2 3 = z 3 4 = λ  

x = 2λ + 1, y = 3λ + 2, z = 4λ + 3

  A B  = (α − 2)  i ^ + (β − 3) j ^ + (γ − 4) k ^  

Now,

(α − 2)  2 + (β − 3) 3 + (γ − 4) 4 = 0

2α − 4 + 3β − 9 + 4γ −16 = 0

2α + 3β + 4γ = 29

...Read more

L 1 = x λ 1 = y 1 2 1 2 = z 1 2

S D = | 2 λ + 3 ( 2 λ + 1 2 ) + λ | 1 4 = | 5 λ + 3 2 | 1 4

5 λ + 3 2 = 7 2 5 λ = 5 λ = 1

| λ | = 1

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Maths NCERT Exemplar Solutions Class 11th Chapter Eight 2025

Maths NCERT Exemplar Solutions Class 11th Chapter Eight 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering