Let Sₙ(x) = logₐ^(1/2) x + logₐ^(1/3) x + ... up to n-terms. Where a > 1. If S₂₄(x) = 1093 and S₁₂(2x) = 265, then the value of a is equal to......
Let Sₙ(x) = logₐ^(1/2) x + logₐ^(1/3) x + ... up to n-terms. Where a > 1. If S₂₄(x) = 1093 and S₁₂(2x) = 265, then the value of a is equal to......
S? (x) = log? ¹? ²x + log? ¹? ³x + .
This is incorrect; the bases are numbers, not powers of 'a'. Let's assume the bases are 1/2, 1/3, 1/6, 1/11, .
The series is S' = 2, 3, 6, 11, 18, .
The differences are 1, 3, 5, 7, . which is an AP.
The n-th term t? is a quadratic in n.
t? = An² + Bn + C.
t?
Similar Questions for you
First term = a
Common difference = d
Given: a + 5d = 2 . (1)
Product (P) = (a1a5a4) = a (a + 4d) (a + 3d)
Using (1)
P = (2 – 5d) (2 – d) (2 – 2d)
-> = (2 – 5d) (2 –d) (– 2) + (2 – 5d) (2 – 2d) (– 1) + (– 5) (2 – d) (2 – 2d)
= –2 [ (d – 2) (5d – 2) + (d – 1) (5d – 2)
a, ar, ar2, ….ar63
a+ar+ar2 +….+ar63 = 7 [a + ar2 + ar4 +.+ar62]
1 + r = 7
r = 6
S20 = [2a + 19d] = 790
2a + 19d = 79 . (1)
2a + 9d = 29 . (2)
from (1) and (2) a = –8, d = 5
= 405 – 10
= 395
3, 7, 11, 15, 19, 23, 27, . 403 = AP1
2, 5, 8, 11, 14, 17, 20, 23, . 401 = AP2
so common terms A.P.
11, 23, 35, ., 395
->395 = 11 + (n – 1) 12
->395 – 11 = 12 (n – 1)
32 = n – 1
n = 33
Sum =
=
= 6699
3, a, b, c are in A.P.
a – 3 = b – a
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths Ncert Solutions class 11th 2026
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering