Let x₀ be the point of local maxima of f(x) = a · (b * c) where a = xî − 2ĵ + 3k, b = −2î + xĵ − k and c = 7î – 2ĵ + xk. Then the value of a · b + b · c + c · a at x = x₀ is
Let x₀ be the point of local maxima of f(x) = a · (b * c) where a = xî − 2ĵ + 3k, b = −2î + xĵ − k and c = 7î – 2ĵ + xk. Then the value of a · b + b · c + c · a at x = x₀ is
f (x) = a? ⋅ (b? * c? ) = |x -2 3; -2 x -1; 7 -2 x|
= x³ - 27x + 26
f' (x) = 3x² - 27 = 0 ⇒ x = ±3 and f' (-3) < 0
⇒ local maxima at x = x? = -3
Thus, a? = -3i? - 2j? + 3k? , b? = 2i? - 3j? - k? , and c? = 7i? - 2j? - 3k?
⇒ a? ⋅ b? + b? ⋅ c? + c? ⋅ a? = 9 - 5 - 26 = -22
Similar Questions for you
c = λ (a x b).
a = I + j - k
b = I + 2j + k
a x b = | I j k |
| 1 -1 |
| 1 2 1 |
= I (1 - (-2) - j (1 - (-1) + k (2-1) = 3i - 2j + k.
c = λ (3i - 2j + k).
Given c ⋅ (i + j + 3k) = 8.
λ (3i - 2j + k) ⋅ (i + j + 3k) = 8
λ (3 - 2 + 3) = 8 => 4λ = 8 => λ = 2.
c = 2 (a x b).
We need to find c ⋅ (a x b).
c ⋅ (a x b) =
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering
