Feedback
×Thank you for using Shiksha Ask & Answer
We hope you got a satisfactory answer to your question.
How likely is it that you would recommend Shiksha Ask & Answer to a friend or colleague?
Not at all likely
Extreme likely
Please suggest areas of improvement for us
Relation and Function Exercise 1.1 Solutions
1. Determine whether each of the following relations are reflexive, symmetric and transitive:
(i) Relation R in the set A = {1, 2, 3…13, 14} defined as
R = {(x, y): 3x − y = 0}
(ii) Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and x < 4}
(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as
R = {(x, y): y is divisible by x}
(iv) Relation R in the set Z of all integers defined as
R = {(x, y): x − y is as integer}
(v) Relation R in the set A of human beings in a town at a particular time given by
(a) R = {(x, y): x and y work at the same place}
(b) R = {(x, y): x and y live in the same locality}
(c) R = {(x, y): x is exactly 7 cm taller than y}
(d) R = {(x, y): x is wife of y}
(e) R = {(x, y): x is father of y}
Relation and Function Exercise 1.1 Solutions
1. Determine whether each of the following relations are reflexive, symmetric and transitive:
(i) Relation R in the set A = {1, 2, 3…13, 14} defined as
R = {(x, y): 3x − y = 0}
(ii) Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and x < 4}
(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as
R = {(x, y): y is divisible by x}
(iv) Relation R in the set Z of all integers defined as
R = {(x, y): x − y is as integer}
(v) Relation R in the set A of human beings in a town at a particular time given by
(a) R = {(x, y): x and y work at the same place}
(b) R = {(x, y): x and y live in the same locality}
(c) R = {(x, y): x is exactly 7 cm taller than y}
(d) R = {(x, y): x is wife of y}
(e) R = {(x, y): x is father of y}
-
1 Answer
-
(i) We have, a relation in set A=
For or i.e.,
does not exist in R
R is not reflexive.
For
Then
So
R is not symmetric
For and . We have
and
Then
i.e.,
R is not Transitive
(ii) We have,
R= is a relation in N
=
=
Clearly, R is not reflexive as and
Also, R is not symmetric as but
And for . Hence, R is not Transitive.
(iii) R= is divisible by x is a relation in set
A=
So, R=
Hence, R is reflexive because i.e.,
R is not sy
...more(i) We have, a relation in set A=
For or i.e.,
does not exist in R
R is not reflexive.
For
Then
So
R is not symmetric
For and . We have
and
Then
i.e.,
R is not Transitive
(ii) We have,
R= is a relation in N
=
=
Clearly, R is not reflexive as and
Also, R is not symmetric as but
And for . Hence, R is not Transitive.
(iii) R= is divisible by x is a relation in set
A=
So, R=
Hence, R is reflexive because i.e.,
R is not symmetric as but
And for and
and where
Then,
Hence,
R is transitive
(iv) R= is an integer is a relation in set Z
For
is an integer
So, i.e., R is reflexive
For and
is an integer
is an integer
is an integer
So, i.e., R is symmetric
For and We have,
is an integer
is an integer
So, is also an integer
is an integer
So, i.e., R is transitive.
(v) (a) R= and work at same place in set A of human being.
For we get
work at same place
So, R is reflexive.
For and We get,
work at same place
work at same place
. So, R is symmetric.
For and and . We have,
work at same place
work at same place
work at same place
i.e., . So, R is Transitive.
(b) R= live in same locality
For , we get,
live in same locality
So, R is reflexive.
For and we get,
live in same locality
live in same locality
i.e., . So, R is symmetric.
For and & . Then
live in same locality
live in same locality
live in same locality
So, i.e., R is transitive.
(c) R= is exactly 7 cm taller than y
For ,
Height height of
So, . i.e., R is not reflexive.
For, and we have,
Height
But
So, i.e., R is not symmetric.
For and and we have,
Height
And
So,
i.e.,
So, R is not transitive.
(d) R= is wife of y
For
X is not wife of x.
So, i.e., R is not reflexive.
For and ,
X is wife of y but y is not wife of x
So, . i.e., R is not symmetric.
For and and
X is wife of y
Y is wife of z
But y can never be husband & wife simultaneously
So, R is not transitive.
(e) R= is father of y
For ,
X is not a father of x
So, i.e., R is not reflexive.
For and
X is father of y
Y is father of z
But x is not father of z
So, i.e., R is not transitive.
less<p><strong>(i)</strong> We have, <span title="Click to copy mathml"><math><mrow><mi>R</mi><mo>=</mo><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow></mrow></mrow><mo>:</mo><mn>3</mn><mi>x</mi><mo>−</mo><mi>y</mi><mo>=</mo><mrow><mrow><mn>0</mn></mrow><mo>}</mo></mrow></mrow></math></span> a relation in set A= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mn>1</mn><mn>4</mn><mrow><mrow></mrow><mo>}</mo></mrow></mrow></mrow></mrow></math></span></p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>∈</mo><mi>A</mi><mo>,</mo><mi>y</mi><mo>=</mo><mn>3</mn><mi>x</mi></mrow></math></span> or <span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></math></span> i.e.,</p><p><span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow></mrow></math></span> does not exist in R</p><p><span title="Click to copy mathml"><math><mrow><mo>∴</mo></mrow></math></span> R is not reflexive.</p><p>For <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi><mo>,</mo><mi>y</mi><mo>=</mo><mn>3</mn><mi>x</mi></mrow></math></span></p><p>Then <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mi>x</mi><mo>≠</mo><mn>3</mn><mi>y</mi></mrow></math></span></p><p>So <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>∴</mo></mrow></math></span> R is not symmetric</p><p>For <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> . We have</p><p><span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>=</mo><mn>3</mn><mi>x</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mi>z</mi><mo>=</mo><mn>3</mn><mi>y</mi></mrow></math></span></p><p>Then <span title="Click to copy mathml"><math><mrow><mi>z</mi><mo>=</mo><mn>3</mn><mrow><mo>(</mo><mrow><mn>3</mn><mi>x</mi></mrow><mo>)</mo></mrow><mo>=</mo><mn>9</mn><mi>x</mi></mrow></math></span></p><p>i.e., <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>∴</mo></mrow></math></span> R is not Transitive</p><p><strong>(ii)</strong> We have,</p><p>R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>:</mo><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mn>5 </mn><mo>&</mo><mi>x</mi><mo><</mo><mn>4</mn></mrow><mo>}</mo></mrow></mrow></mrow></mrow></math></span> is a relation in N</p><p>= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>+</mo><mn>5</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>2</mn><mo>+</mo><mn>5</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>3</mn><mo>,</mo><mn>3</mn><mo>+</mo><mn>5</mn></mrow><mo>)</mo></mrow></mrow><mo>}</mo></mrow></mrow></mrow></mrow></math></span></p><p>= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>6</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>7</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>3</mn><mo>,</mo><mn>8</mn></mrow><mo>)</mo></mrow></mrow><mo>}</mo></mrow></mrow></mrow></mrow></math></span></p><p>Clearly, R is not reflexive as <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo><</mo><mn>4</mn><mo>&</mo><mi>x</mi><mo>∈</mo><mi>N</mi></mrow></math></span></p><p>Also, R is not symmetric as <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>6</mn></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> but <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mn>6</mn><mo>,</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span></p><p>And for <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span> . Hence, R is not Transitive.</p><p><strong>(iii)</strong> R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>;</mo><mi>y</mi></mrow></mrow></mrow></math></span> is divisible by x <span title="Click to copy mathml"><math><mrow><mrow><mrow></mrow><mo>}</mo></mrow></mrow></math></span> is a relation in set</p><p>A= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mrow><mrow><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></mrow><mo>}</mo></mrow></mrow></mrow></mrow></math></span></p><p>So, R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>5</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>6</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>6</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>3</mn><mo>,</mo><mn>6</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>6</mn><mo>,</mo><mn>6</mn></mrow><mo>)</mo></mrow></mrow><mo>}</mo></mrow></mrow></mrow></mrow></math></span></p><p>Hence, R is reflexive because <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>5</mn><mo>,</mo><mn>5</mn></mrow><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mrow><mn>6</mn><mo>,</mo><mn>6</mn></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> i.e., <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span></p><p>R is not symmetric as <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> but <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span></p><p>And for <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi><mo>&</mo><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mfrac><mrow><mi>y</mi></mrow><mrow><mi>z</mi></mrow></mfrac><mo>=</mo><mi>n</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mfrac><mrow><mi>z</mi></mrow><mrow><mi>y</mi></mrow></mfrac><mo>=</mo><mi>m</mi></mrow></math></span> where <span title="Click to copy mathml"><math><mrow><mi>n</mi><mo>&</mo><mi>m</mi><mo>∈</mo><mi>N</mi></mrow></math></span></p><p>Then, <span title="Click to copy mathml"><math><mrow><mi>z</mi><mo>=</mo><mi>m</mi><mi>y</mi><mo>=</mo><mi>m</mi><mo stretchy="false">(</mo><mi>n</mi><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mi>n</mi><mo>.</mo><mi>x</mi></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mfrac><mrow><mi>z</mi></mrow><mrow><mi>x</mi></mrow></mfrac><mo>=</mo><mi>m</mi><mo>.</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>m</mi><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span></p><p>Hence, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>∴</mo></mrow></math></span> R is transitive</p><p><strong>(iv)</strong> R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>:</mo><mi>x</mi><mo>−</mo><mi>y</mi></mrow></mrow></mrow></math></span> is an integer <span title="Click to copy mathml"><math><mrow><mrow><mrow></mrow><mo>}</mo></mrow></mrow></math></span> is a relation in set Z</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>∈</mo><mi>Z</mi></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>−</mo><mi>x</mi><mo>=</mo><mn>0</mn></mrow></math></span> is an integer</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> i.e., R is reflexive</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>Z</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow></math></span> is an integer</p><p><span title="Click to copy mathml"><math><mrow><mo>−</mo><mrow><mo>(</mo><mrow><mi>y</mi><mo>−</mo><mi>x</mi></mrow><mo>)</mo></mrow></mrow></math></span> is an integer</p><p><span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>−</mo><mi>x</mi></mrow><mo>)</mo></mrow></mrow></math></span> is an integer</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> i.e., R is symmetric</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>R</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi><mo>&</mo><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> We have,</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow></math></span> is an integer</p><p><span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>−</mo><mi>z</mi></mrow></math></span> is an integer</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mrow><mi>y</mi><mo>−</mo><mi>z</mi></mrow><mo>)</mo></mrow></mrow></math></span> is also an integer</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>−</mo><mi>z</mi></mrow></math></span> is an integer</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> i.e., R is transitive.</p><p><strong>(v)</strong> <strong>(a) </strong>R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>:</mo><mi>x</mi></mrow></mrow></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mi>y</mi></mrow></math></span> work at same place <span title="Click to copy mathml"><math><mrow><mrow><mrow></mrow><mo>}</mo></mrow></mrow></math></span> in set A of human being.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow></math></span> we get</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>&</mo><mi>x</mi></mrow></math></span> work at same place</p><p><span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> So, R is reflexive.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> We get,</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>&</mo><mi>y</mi></mrow></math></span> work at same place</p><p><span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>&</mo><mi>x</mi></mrow></math></span> work at same place</p><p><span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> . So, R is symmetric.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> . We have,</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>&</mo><mi>y</mi></mrow></math></span> work at same place</p><p><span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>&</mo><mi>z</mi></mrow></math></span> work at same place</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>&</mo><mi>z</mi></mrow></math></span> work at same place</p><p>i.e., <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> . So, R is Transitive.</p><p><strong>(b)</strong> R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>:</mo><mi>x</mi><mo>&</mo><mi>y</mi></mrow></mrow></mrow></math></span> live in same locality <span title="Click to copy mathml"><math><mrow><mrow><mrow></mrow><mo>}</mo></mrow></mrow></math></span></p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow></math></span> , we get,</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>&</mo><mi>x</mi></mrow></math></span> live in same locality</p><p><span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> So, R is reflexive.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> we get,</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>&</mo><mi>y</mi></mrow></math></span> live in same locality</p><p><span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>&</mo><mi>x</mi></mrow></math></span> live in same locality</p><p>i.e., <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> . So, R is symmetric.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow></mrow></math></span> & <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> . Then</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></math></span> live in same locality</p><p><span title="Click to copy mathml"><math><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow></math></span> live in same locality</p><p><span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>z</mi></mrow></math></span> live in same locality</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> i.e., R is transitive.</p><p><strong>(c)</strong> R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>:</mo><mi>x</mi></mrow></mrow></mrow></math></span> is exactly 7 cm taller than y <span title="Click to copy mathml"><math><mrow><mrow><mrow></mrow><mo>}</mo></mrow></mrow></math></span></p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow></math></span> ,</p><p>Height <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi></mrow><mo>)</mo></mrow><mo>≠</mo><mn>7</mn><mo>+</mo></mrow></math></span> height of <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi></mrow><mo>)</mo></mrow></mrow></math></span></p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span> . i.e., R is not reflexive.</p><p>For, <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> we have,</p><p>Height <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi></mrow><mo>)</mo></mrow></mrow></math></span> <span title="Click to copy mathml"><math><mrow><mo>=</mo><mn>7</mn><mo>+</mo><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>y</mi></mrow><mo>)</mo></mrow></mrow></math></span></p><p>But <span title="Click to copy mathml"><math><mrow><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>y</mi></mrow><mo>)</mo></mrow><mo>≠</mo><mn>7</mn><mo>+</mo><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>x</mi></mrow><mo>)</mo></mrow></mrow></math></span></p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> i.e., R is not symmetric.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> we have,</p><p>Height <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi></mrow><mo>)</mo></mrow><mo>=</mo><mn>7</mn><mo>+</mo><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>y</mi></mrow><mo>)</mo></mrow></mrow></math></span></p><p>And <span title="Click to copy mathml"><math><mrow><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>y</mi></mrow><mo>)</mo></mrow><mo>=</mo><mn>7</mn><mo>+</mo><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>z</mi></mrow><mo>)</mo></mrow></mrow></math></span></p><p>So, <span title="Click to copy mathml"><math><mrow><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>x</mi></mrow><mo>)</mo></mrow><mo>=</mo><mn>7</mn><mo>+</mo><mn>7</mn><mo>+</mo><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>z</mi></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mn>4</mn><mo>+</mo><mi>h</mi><mi>e</mi><mi>i</mi><mi>g</mi><mi>h</mi><mi>t</mi><mrow><mo>(</mo><mrow><mi>z</mi></mrow><mo>)</mo></mrow></mrow></math></span></p><p>i.e., <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span></p><p>So, R is not transitive.</p><p><strong>(d)</strong> R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow></mrow></mrow><mo>:</mo><mi>x</mi></mrow></math></span> is wife of y <span title="Click to copy mathml"><math><mrow><mrow><mrow></mrow><mo>}</mo></mrow></mrow></math></span></p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>∈</mo><mi>A</mi><mo>,</mo></mrow></math></span></p><p>X is not wife of x.</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span> i.e., R is not reflexive.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span> ,</p><p>X is wife of y but y is not wife of x</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span> . i.e., R is not symmetric.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>y</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span></p><p>X is wife of y</p><p>Y is wife of z</p><p>But y can never be husband & wife simultaneously</p><p>So, R is not transitive.</p><p><strong>(e)</strong> R= <span title="Click to copy mathml"><math><mrow><mrow><mo>{</mo><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow></mrow></mrow><mo>:</mo><mi>x</mi></mrow></math></span> is father of y <span title="Click to copy mathml"><math><mrow><mrow><mrow></mrow><mo>}</mo></mrow></mrow></math></span></p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>∈</mo><mi>A</mi></mrow></math></span> ,</p><p>X is not a father of x</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>x</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span> i.e., R is not reflexive.</p><p>For <span title="Click to copy mathml"><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mo>)</mo></mrow><mo>∈</mo><mi>R</mi></mrow></math></span></p><p>X is father of y</p><p>Y is father of z</p><p>But x is not father of z</p><p>So, <span title="Click to copy mathml"><math><mrow><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>z</mi></mrow><mo>)</mo></mrow><mo>∉</mo><mi>R</mi></mrow></math></span> i.e., R is not transitive.</p>
Similar Questions for you
R1 = { (1, 1) (1, 2), (1, 3)., (1, 20), (2, 2), (2, 4). (2, 20), (3, 3), (3, 6), . (3, 18),
(4, 4), (4, 8), . (4, 20), (5, 5), (5, 10), (5, 15), (5, 20), (6, 6), (6, 12), (6, 18), (7. 7),
(7, 14), (8, 8), (8, 16), (9, 9), (9, 18), (10, 10), (10, 20), (11, 11), (12, 12), . (20, 20)}
n (R1) = 66
R2 = {a is integral multiple of b}
So n (R1 – R2) = 66 – 20 = 46
as R1 Ç R2 = { (a, a) : a Î s} = { (1, 1), (2, 2), ., (20, 20)}


⇒ (y, x) ∈ R V (x, y) ∈ R
(x, y) ∈ R ⇒ 2x = 3y and (y, x) ∈ R ⇒ 3x = 2y
Which holds only for (0, 0)
Which does not belongs to R.
∴ Value of n = 0
f is increasing function
x < 5x < 7x

f (x) < f (5x) < f (7x)
->
Given f (k) =
Case I : If x is even then g (x) = x . (i)
Case II : If x is odd then g (x + 1) = x + 1 . (ii)
From (i) & (ii), g (x) = x, when x is even
So total no. of functions = 105 × 1 = 105
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers
Learn more about...
-
Maths Relations and Functions 2025 Exam
View Exam Details -
Maths Ncert Solutions class 12th 2023 Exam
View Exam Details
Share Your College Life Experience
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Please select a topic from suggestions
or
Ask Current Students, Alumni & our Experts