Relation and Function Exercise 1.2 Solutions

17. Show that the function f: R* → R* defined by f(x) = 1/x is one-one and onto, where: R* is the set of all non-zero real numbers. Is the result true, if the domain: R* is replaced by N with the co-domain being same as: R*?

0 3 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • V

    Answered by

    Vishal Baghel | Contributor-Level 10

    4 months ago

    The fx n is f(x)=1x , which is a f:R*  R* and R* is set of all non-zero real numbers

    For, x1,x2R*,f(x1)=f(x2)

    1x1=1x2

    x1=x2 So, f is one-one

    For, yR*, x=1f(x)=1y such that

    So, f(x)=y

    So, every element in the co-domain has a pre-image in f

    So, f is onto

    If f:NR* such that f(x)=1x

    For, x1,x2N, f(x1)=f(x2)

    1x1=1x2

    x1=x2 So, f is one-one

    For, yR* and f(x)=y we have x=1yN

    Eg., 3R* so x=13N

    So, f is not onto

Similar Questions for you

A
alok kumar singh

R1 = { (1, 1) (1, 2), (1, 3)., (1, 20), (2, 2), (2, 4). (2, 20), (3, 3), (3, 6), . (3, 18),
(4, 4), (4, 8), . (4, 20), (5, 5), (5, 10), (5, 15), (5, 20), (6, 6), (6, 12), (6, 18), (7. 7),
(7, 14), (8, 8), (8, 16), (9, 9), (9, 18), (10, 10), (10, 20), (11, 11), (12, 12), . (20, 20)}

n (R1) = 66

R2 = {a is integral multiple of b}

So n (R1 – R2) = 66 – 20 = 46

as R1 Ç R2 = { (a, a) : a Î s} = { (1, 1), (2, 2), ., (20, 20)}

A
alok kumar singh

g o f ( x ) = { f ( x ) , f ( x ) < 0 f ( x ) , f ( x ) > 0

= { e l n x = x ( 0 , 1 ) e x ( , 0 ) l n x ( 1 , )

Therefore, gof (x) is many one and into

A
alok kumar singh

  ?  R is symmetric relation

⇒   (y, x) R V (x, y) R

(x, y)  R 2x = 3y and (y, x) R 3x = 2y

Which holds only for (0, 0)

Which does not belongs to R.

Value of n = 0

A
alok kumar singh

f is increasing function

x < 5x < 7x

f (x) < f (5x) < f (7x)

  f ( x ) f ( x ) < f ( 5 x ) f ( x ) < f ( 7 x ) f ( x )           

l i m x f ( x ) f ( x ) < l i m x f ( 5 x ) f ( x ) < l i m x f ( 7 x ) f ( x )             

-> 1 < l i m x f ( 5 x ) f ( x ) < 1 l i m x f ( 5 x ) f ( x ) = 1

l i m x ( f ( 5 x ) f ( x ) 1 ) = 0            

A
alok kumar singh

Given f (k) = { k + 1 , k i s o d d k , k i s e v e n

  ? g : A A           such that g (f (x) = f (x)

Case I : If x is even then g (x) = x . (i)

Case II : If x is odd then g (x + 1) = x + 1 . (ii)

From (i) & (ii), g (x) = x, when x is even

So total no. of functions = 105 × 1 = 105

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post