Solution of the differential equation, xdy = is (where s (-1, 1))
Solution of the differential equation, xdy = is (where s (-1, 1))
Option 1 - <p>log<sub>e</sub> <span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>|</mo> </mrow> </mrow> </math> </span> = sin<sup>-1</sup>x + C </p>
Option 2 - <p>log<sub>e</sub> <span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mo>|</mo> </mrow> </mrow> </math> </span> = 2sin<sup>-1</sup>x + C</p>
Option 3 - <p>log<sub>e</sub> <span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> </mrow> </math> </span> = 2sin<sup>-1</sup>x + C</p>
Option 4 - <p>log<sub>e</sub> <span class="mathml" contenteditable="false"> <math> <mrow> <mrow> <mo>|</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>s</mi> <mi>i</mi> <msup> <mrow> <mi>n</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>x</mi> <mo>+</mo> <mi>C</mi> </mrow> </math> </span><!--[endif]--><!-- [if gte mso 9]><xml>
<o:OLEObject Type="Embed" ProgID="Equation.DSMT4" ShapeID="_x0000_i1025"
DrawAspect="Content" ObjectID="_1819195012">
</o:OLEObject>
</xml><![endif]--></p>
5 Views|Posted 5 months ago
Asked by Shiksha User
1 Answer
V
Answered by
5 months ago
Correct Option - 1
Detailed Solution:
Integrate both sides we get
logexy = sin1 x + C
Similar Questions for you
It's difficult but in some colleges you may can get
is collinear with
⇒ = …(1)
is collinear with
⇒ …(2)
From (1) and (2)
->
and
, put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt
->
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers
Learn more about...

Maths Differential Equations 2021
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
or
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
or
See what others like you are asking & answering