The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be 45°. After walking a distance of 80 meters towards the top, up a slope inclined at an angle of 30° to the horizontal plane, the angle of elevation of the top of the hill becomes 75°. Then the height of the hill (in metres) is [numerical value].
The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be 45°. After walking a distance of 80 meters towards the top, up a slope inclined at an angle of 30° to the horizontal plane, the angle of elevation of the top of the hill becomes 75°. Then the height of the hill (in metres) is [numerical value].
x+z=h. x=80cos30, y=80sin30. tan75= (h-y)/z. h=80.
Similar Questions for you
|2A| = 27
8|A| = 27
Now |A| = α2–β2 = 24
α2 = 16 + β2
α2– β2 = 16
(α–β) (α+β) = 16
->α + β = 8 and
α – β = 2
->α = 5 and β = 3
|A| = 3
|B| = 1
->|C| = |ABAT| = |A|B|A7| = |A|2|B|
= 9
->|X| = |A|C|2|AT|
= 3 * 92 * 3 = 9 * 92 = 729
|A| = 2
&nb
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else.
On Shiksha, get access to
Learn more about...

Maths NCERT Exemplar Solutions Class 11th Chapter Four 2025
View Exam DetailsMost viewed information
SummaryDidn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Ask Current Students, Alumni & our Experts
Have a question related to your career & education?
See what others like you are asking & answering