The maximum value of f(x) =
| sin²x 1+cos²x cos2x |
| 1+sin²x cos²x cos2x |, x ∈ R is:
| sin²x cos²x sin2x |
The maximum value of f(x) =
| sin²x 1+cos²x cos2x |
| 1+sin²x cos²x cos2x |, x ∈ R is:
| sin²x cos²x sin2x |
Option 1 -
3/4
Option 2 -
5
Option 3 -
√5
Option 4 -
√7
-
1 Answer
-
Correct Option - 3
Detailed Solution:The problem involves a function f (x) defined by a determinant:
f (x) = | sin²x 1+cos²x cos2x |
| 1+sin²x cos²x cos2x |
| sin²x cos²x sin2x |Applying the row operation R? → R? - R? , we get:
f (x) = | -1 0 |
| 1+sin²x cos²x cos2x |
| sin²x cos²x sin2x |Expanding the determinant along the first row:
f (x) = -1 (cos²x * sin2x - cos2x * cos²x) - 1 (1+sin²x)sin2x - sin²x * cos2x)
= -cos²x * sin2x + cos2x * cos²x - sin2x - sin²x * sin2x + sin²x * cos2x
= -sin2x (cos²x + sin²x) + cos2x (cos²x + sin²x) - sin2x
= -sin2x + cos2x - sin2x
= cos...more
Similar Questions for you
|2A| = 27
8|A| = 27
Now |A| = α2–β2 = 24
α2 = 16 + β2
α2– β2 = 16
(α–β) (α+β) = 16
->α + β = 8 and
α – β = 2
->α = 5 and β = 3
|A| = 3
|B| = 1
->|C| = |ABAT| = |A|B|A7| = |A|2|B|
= 9
->|X| = |A|C|2|AT|
= 3 * 92 * 3 = 9 * 92 = 729
|A| = 2
->
->, m ¬ even
7
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers