The number of distinct real roots of the determinant |sin x, cos x, cos x; cos x, sin x, cos x; cos x, cos x, sin x| = 0 in the interval -π/4 ≤ x ≤ π/4 is:
The number of distinct real roots of the determinant |sin x, cos x, cos x; cos x, sin x, cos x; cos x, cos x, sin x| = 0 in the interval -π/4 ≤ x ≤ π/4 is:
Option 1 -
2
Option 2 -
4
Option 3 -
1
Option 4 -
3
-
1 Answer
-
Correct Option - 3
Detailed Solution:R? → R? -R? , R? → R? -R?
|sinx-cosx, cosx-sinx, 0; 0, sinx-cosx, cosx-sinx; cosx, sinx| = 0
(sinx-cosx)² |1, -1, 0; 0, 1, -1; cosx, sinx| = 0
(sinx-cosx)² (1 (sinx+cosx) + 1 (cosx) = 0
(sinx-cosx)² (sinx + 2cosx) = 0
sin x = cos x
tan x = 1 ⇒ x = π/4
or
sin x = -2cos x
tan x = -2
Not within given range.
Similar Questions for you
|2A| = 27
8|A| = 27
Now |A| = α2–β2 = 24
α2 = 16 + β2
α2– β2 = 16
(α–β) (α+β) = 16
->α + β = 8 and
α – β = 2
->α = 5 and β = 3
|A| = 3
|B| = 1
->|C| = |ABAT| = |A|B|A7| = |A|2|B|
= 9
->|X| = |A|C|2|AT|
= 3 * 92 * 3 = 9 * 92 = 729
|A| = 2
->
->, m ¬ even
7
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers