Where do I find the Integration of a particular function Formula?

0 5 Views | Posted a month ago
Asked by Shiksha User

  • 1 Answer

  • Students can find the formula of integration for a particular function in this article. It is important to memorise these formulas to solve the integral problem easily. Below is the integration of a particular function formula.

    The formula of a particular function:

    1. Power Rule: 

    x n d x = x n + 1 n + 1 + C ( n 1 )

    2. Reciprocal Function:

    1 x d x = ln | x | + C

    3. Trigonometric Function: 

    • sin x d x = cos x + C
    • cos x d x = sin x + C
    • sec 2 x d x = tan x + C
    • csc 2 x d x = cot x + C
    • sec x tan x d x = sec x + C
    • csc x cot x d x = csc x + C

    4. Inverse Trigonometric Function

    • 1 1 + x 2 d x = tan 1 x + C
    • 1 1 x 2 d x = sin 1 x + C
    • 1 1 x 2 d x = cos 1 x + C

Similar Questions for you

V
Vikash Kumar Vishwakarma

Below are a few important tips to remember the integrals of some particular functions:
1. Know the derivatives for each integral.
2. Make yourself familiar with the standard formulas first.
3. Practice daily for better memory.
4. Group similar formulas

A
alok kumar singh

( s i n x c o s x ) s i n 2 x t a n x ( s i n 3 x + c o s 3 x ) d x

( s i n x c o s x ) s i n x c o s x s i n 3 x + c o s 3 x d x , put sin3x + cos3x = t(3 sin2x×cosx – 3cos2xsinx) dx = dt

-> 1 3 d t t

= l n t 3 + c

= l n | s i n 3 x + c o s 3 x | 3 + c

             

           

A
alok kumar singh

l i m h 0 ( π 2 h ) ( π 2 ) 3 c o s ( t 1 / 3 ) d t h 2

= l i m h 0 0 + 3 ( π 2 h ) 2 c o s ( π 2 h ) 2 h

= l i m h 0 3 ( π 2 h ) 2 s i n h 2 h

= 3 π 2 8

A
alok kumar singh

π 2 π 2 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) dx

= 0 π 2 { ( 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) + 8 2 c o s x ( 1 + e s i n x ) ( 1 + s i n 4 x ) ) } d x            

= 8 2 0 π 2 c o s x 1 + s i n 4 x d x            

Let sin x = t

I = 8 2 0 1 d t 1 + t 4            

= 4 2 0 1 ( 1 + 1 t 2 ) ( 1 1 t 2 ) t 2 + 1 t 2 d t       

= 4 2 0 1 ( 1 + 1 t 2 ) d t ( t 1 t ) 2 + 2 4 2 0 1 ( 1 1 t 2 ) d t ( t + 1 t ) 2 2            

= 4 2 1 2 ( t a n 1 t 1 t 2 ) 0 1 4 2 1 2 2 [ l o g | t + 1 t 2 t + 1 t + 2 | ] 0 1         

= 2 π 2 l o g | 2 2 2 + 2 |        

= 2 π + 2 l o g ( 3 + 2 2 )           

a = b = 2

A
alok kumar singh

I = 0 π / 4 x d x s i n 4 ( 2 x ) + c o s 4 ( 2 x )

           Let 2x = t then   d x = 1 2 d t

I = t 2 1 2 d t s i n 4 t + c o s 4 t

= 1 4 0 π / 2 t d t s i n 4 t + c o s 4 t d t            

I = 1 4 0 π / 2 ( π 2 t ) d t s i n 4 t + c o s 4 t d t

2 I = 1 4 0 π / 2 π 2 d t s i n 4 t + c o s 4 t

2 I = 1 4 0 π / 2 π 2 d t s i n 4 t + c o s 4 t

2 I = π 8 0 π / 2 s i n 4 t d t t a n 4 t + 1            

Let tan t = y then

2 I = π 8 0 ( 1 + y 2 ) d y 1 + y 4             

= π 8 0 1 + 1 y 2 y 2 + 1 y 2 2 + 2 d y

= π 8 0 ( 1 + 1 y 2 ) d y 2 + ( y 1 y ) 2             

Let y1y=u  

2 I = π 8 d u 2 + u 2

= π 8 2 [ t a n 1 4 2 ]                  

I = π 2 1 6 2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post