13.7 Estimate the average thermal energy of a helium atom at (i) room temperature (27 °C), (ii) the temperature on the surface of the Sun (6000 K), (iii) the temperature of 10 million Kelvin (the typical core temperature in the case of a star).
13.7 Estimate the average thermal energy of a helium atom at (i) room temperature (27 °C), (ii) the temperature on the surface of the Sun (6000 K), (iii) the temperature of 10 million Kelvin (the typical core temperature in the case of a star).
-
1 Answer
-
13.7 (i) At room temperature, T = 27 = 300 K
is Boltzmann constant = 1.38
Average thermal energy = = = 6.21 J
Hence, the average thermal energy of a helium atom at room temperature is 6.21 J
(ii) On the surface of the Sun, T = 6000 K
Hence average thermal energy = = = 1.242 J
Hence, the average thermal energy of a helium atom on the surface of the Sun is 1.242 J
(iii) Inside the core of a star, T = K
Hence average thermal energy = = = 2.07 J
Hence, the average thermal energy of a helium atom
...more
Similar Questions for you
PV = nRT
->Pµn
->Ratio=
T = 20 K
T = –253°C
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers