14.9 A spring having with a spring constant 1200 N m–1 is mounted on a horizontal table as shown in Fig. 14.24. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.
(b) Maximum acceleration (a) is given by the relation: a =
where, angular frequency = and A = maximum displacement
a = = = 8 m/
(c) Maximum velocity, = = 0.4 m/s
Hence the maximum velocity of the mass is 0.4 m/s
<p>Spring constant, k = 1200 N/m</p><p>Mass, m = 3 kg</p><p>Displacement, d = 2 cm = 0.02 m</p><p> </p><p><strong> (a)</strong> Frequency of oscillation, v is given by</p><p>v = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1</mn></mrow></mrow><mrow><mrow><mi>T</mi></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1</mn></mrow></mrow><mrow><mrow><mn>2</mn><mi>π</mi></mrow></mrow></mfrac><msqrt><mrow><mfrac><mrow><mrow><mi>k</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac></mrow></msqrt></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1</mn></mrow></mrow><mrow><mrow><mn>2</mn><mi>π</mi></mrow></mrow></mfrac><msqrt><mrow><mfrac><mrow><mrow><mn>1200</mn></mrow></mrow><mrow><mrow><mn>3</mn></mrow></mrow></mfrac></mrow></msqrt></math></span> = 3.183 m/s</p><p> </p><p><strong> (b)</strong> Maximum acceleration (a) is given by the relation: a = <span title="Click to copy mathml"><math><msup><mrow><mrow><mi>ω</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup><mi>A</mi></math></span></p><p>where, <span title="Click to copy mathml"><math><mi>ω</mi><mo>=</mo><mi></mi></math></span> angular frequency = <span title="Click to copy mathml"><math><msqrt><mrow><mfrac><mrow><mrow><mi>k</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac></mrow></msqrt></math></span> and A = maximum displacement</p><p>a = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mi>k</mi><mi>A</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac></math></span> = <span title="Click to copy mathml"><math><mfrac><mrow><mrow><mn>1200</mn><mi></mi><mo>×</mo><mn>0.02</mn></mrow></mrow><mrow><mrow><mn>3</mn></mrow></mrow></mfrac></math></span> = 8 m/ <span title="Click to copy mathml"><math><msup><mrow><mrow><mi>s</mi></mrow></mrow><mrow><mrow><mn>2</mn></mrow></mrow></msup></math></span></p><p> </p><p><strong> (c)</strong> Maximum velocity, <span title="Click to copy mathml"><math><msub><mrow><mrow><mi>v</mi></mrow></mrow><mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow></msub><mo>=</mo><mi></mi><mi></mi><mi>A</mi><mi>ω</mi><mo>=</mo><mi>A</mi><msqrt><mrow><mfrac><mrow><mrow><mi>k</mi></mrow></mrow><mrow><mrow><mi>m</mi></mrow></mrow></mfrac></mrow></msqrt></math></span> = <span title="Click to copy mathml"><math><mn>0.02</mn><msqrt><mrow><mfrac><mrow><mrow><mn>1200</mn></mrow></mrow><mrow><mrow><mn>3</mn></mrow></mrow></mfrac></mrow></msqrt><mi mathvariant="normal"></mi></math></span> = 0.4 m/s</p><p>Hence the maximum velocity of the mass is 0.4 m/s</p>
This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.