As shown in the figure, a particle of mass 10 kg is placed at a point A. When the particle is slightly displaced to its right, it starts moving and reaches the point B. The speed of the particle at B is x m/s. (Take g = 10 m/s²) The value of 'x' to the nearest integer is----------.

2 Views|Posted 5 months ago
Asked by Shiksha User
1 Answer
R
5 months ago

Using Conservation of Mechanical Energy at point-A and at point-B, we can write
K_B = U_A - U_B [Since K_A = 0]
⇒ (1/2)mv_B² = mg (h_A - h_B)
⇒ v_B = √ (2 * 10 * (10 - 5) = 10m/s

Thumbs Up IconUpvote Thumbs Down Icon

Similar Questions for you

No. Since kinetic energy is a scalar quantity, it only depends on speed of the body and not the direction. So if the direction of the body is changed but the speed remains unchanged, there won't be any effect on the kinetic energy. However, if changing the direction also changes the speed of the bod

...Read more

If you look closely at the formula of kinetic energy (1/2*m*v^2), the velocity is squared which automatically gives a positive integer. And mass of the body can never be a negative value, which leads to the result being a positive integer.

The 1/2 is a result of mathematical calculation, which occurs when we integrate? vdv in the formula of work done according to Newton's second law of motion. Without this, the final result will turn out to be twice of the actual value.

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Physics NCERT Exemplar Solutions Class 11th Chapter Five 2025

Physics NCERT Exemplar Solutions Class 11th Chapter Five 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering