Mass per unit are of a circular disc of radius a depends on the distance r from its centre as σ ( r ) = A + B r . The moment of inertia of the disc about the axis, perpendicular to the plane and passing through its centre is:

Option 1 - <p><span class="mathml" contenteditable="false"> <math> <mn>2</mn> <mi>π</mi> <msup> <mrow> <mrow> <mi>a</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </msup> <mfenced separators="|"> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi>A</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <mi>B</mi> </mrow> </mrow> <mrow> <mrow> <mn>5</mn> </mrow> </mrow> </mfrac> </mrow> </mrow> </mfenced> </math> </span></p>
Option 2 - <p><span class="mathml" contenteditable="false"> <math> <mn>2</mn> <mi>π</mi> <msup> <mrow> <mrow> <mi mathvariant="normal">a</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </msup> <mfenced separators="|"> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi mathvariant="normal">A</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">B</mi> </mrow> </mrow> <mrow> <mrow> <mn>5</mn> </mrow> </mrow> </mfrac> </mrow> </mrow> </mfenced> </math> </span></p>
Option 3 - <p><span class="mathml" contenteditable="false"> <math> <mn>2</mn> <mi>π</mi> <msup> <mrow> <mrow> <mi mathvariant="normal">a</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </msup> <mfenced separators="|"> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">A</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <mi mathvariant="normal">B</mi> </mrow> </mrow> <mrow> <mrow> <mn>5</mn> </mrow> </mrow> </mfrac> </mrow> </mrow> </mfenced> </math> </span></p>
Option 4 - <p><span class="mathml" contenteditable="false"> <math> <mi>π</mi> <msup> <mrow> <mrow> <mi mathvariant="normal">a</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </msup> <mfenced separators="|"> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi mathvariant="normal">A</mi> </mrow> </mrow> <mrow> <mrow> <mn>4</mn> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mrow> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">B</mi> </mrow> </mrow> <mrow> <mrow> <mn>5</mn> </mrow> </mrow> </mfrac> </mrow> </mrow> </mfenced> </math> </span></p>
3 Views|Posted 6 months ago
Asked by Shiksha User
1 Answer
A
6 months ago
Correct Option - 2
Detailed Solution:

Moment of inertia of ring

d l = d m r 2

I = 0 a ? ( A + B r ) 2 π r d r π r 2
= 2 π A 0 a ? r 3 d r + 2 π B 0 a ? r 4 d r
 
= 2 π A a 4 4 + B a 5 5
= 2 π a 4 A 4 + B a 5

 

Thumbs Up IconUpvote Thumbs Down Icon

Taking an Exam? Selecting a College?

Get authentic answers from experts, students and alumni that you won't find anywhere else.

On Shiksha, get access to

66K
Colleges
|
1.2K
Exams
|
6.9L
Reviews
|
1.8M
Answers

Learn more about...

Physics System of Particles and Rotational Motion 2025

Physics System of Particles and Rotational Motion 2025

View Exam Details

Most viewed information

Summary

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

Have a question related to your career & education?

or

See what others like you are asking & answering