Can I get admission to SGI - Samalkha Group of Institutions B.E. / B.Tech course without CBSE 12th?
-
1 Answer
-
Yes, you can get admission to the B.E./B.Tech course at SGI - Samalkha Group of Institutions even if you haven't completed 12th through CBSE, provided you meet the eligibility criteria. Candidates from other recognised boards (state boards, NIOS, etc.) can also apply. The key requirements include:
Eligibility:
- Completion of 10+2 from a recognised board with Physics, Chemistry, and Mathematics as core subjects.
- A minimum percentage in 12th grade (typically 45-50%).
Entrance Exam:
- JEE Main or state-level engineering entrance exams are generally required for admission. Some merit-based or direct admissions might also be available.
Check with th
...more
Similar Questions for you
Class 11 syllabus is vast. It is lots of theoretical concepts. Also, there are many formulas to remember. One who have good grip over concept and formulas can easily qualify the examination. Some of the important chapters in class 11 Physics are Laws of motions, gravitation, oscillations, thermodynamics, etc. These topics are also important to prepare for competitive examination.
Yes, NCERT Class 11 Physics solutions pdf is available for free. Download and start the preparation for the exam.
Ofcourse, you should join Chandigarh University. The university is really growing fast and it has always
been the first choice of students. Students dream to join here, not just because of the curriculum, but
because the university gives more than that. It gives top- class education, many specialization, and also a
lot of practical learning. The programs are designed as per the latest market demand and industry
trends. Along with this, the university keeps arranging workshops, seminars, and guest lectures. These
sessions help students connect with industry experts, learn from their experience, and prepare for
future jobs.
You can use the position vector to find the real displacement of a point from a reference point.
Two vectors which are parallel to each other, irrespective of direction, are called parallel vectors.
Types are given below
- Collinear vectors
- Parallel vectors
- Antiparallel vectors
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers