Given below are two statements:
Statement I : An electric dipole is placed at the centre of a hollow sphere. The flux of electric field through the sphere is zero but the electric field is not zero anywhere in the sphere.
Statement II : If R is the radius of a solid metallic sphere and Q be the total charge on it. The electric field at any point on the spherical surface of radius r (
In the light of the above statements, choose the correct answer from the option given below:
Given below are two statements:
Statement I : An electric dipole is placed at the centre of a hollow sphere. The flux of electric field through the sphere is zero but the electric field is not zero anywhere in the sphere.
Statement II : If R is the radius of a solid metallic sphere and Q be the total charge on it. The electric field at any point on the spherical surface of radius r (
In the light of the above statements, choose the correct answer from the option given below:
Option 1 -
Statement I is false but Statement II is true
Option 2 -
Both Statement I and Statement II are true
Option 3 -
Statement I is true but Statement II is false
Option 4 -
Both Statement I and Statement II are false
-
1 Answer
-
Correct Option - 1
Detailed Solution:All the charge given to a conducting sphere resides on outer surface.
Similar Questions for you
Gauss Law is only concerned with the total enclosed charge that finally tells us the total flux. The charges outside may change field patterns. They not affect the total flux. It's actually incorrect to assume the field due to the external charges should also affect the flux through the Gaussian surface.
Gauss Law does not directly give the electric field in all cases. It can only be used in calculations for symmetrical surfaces: spherical, cylindrical, or planar.
The integral form of Gauss Law is considered as an indirect form and only in theory. It will still create a mathematical problem. The Gaussian surface passing through a discrete charge means it lies on the surface. Half of the electric flux is outside and half in. Not on the boundary. And we know Gauss' Law holds true only when there are closed surfaces.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 682k Reviews
- 1800k Answers