106. 150 workers were engaged to finish a job in a certain number of days. 4 workers dropped out on second day, 4 more workers dropped out on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed.
106. 150 workers were engaged to finish a job in a certain number of days. 4 workers dropped out on second day, 4 more workers dropped out on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed.
-
1 Answer
-
106. Let ‘x’ be the no of days in which 150 workers took to finish the job.
If 150 workers worked for x days then number of workers for x days =150 x.
But given that number of works dropped 4 on 2nd day, then 4 on 3rd day and so on taking 8 more
days to finish the work. i.e., x + 8 days we can express as.
150 x = 150 + (150 4) + (150 4 4)+……+ (x + 8) days.
150 x = 150 + 146 + 142 +……… (x+8) days which
R.H.S. from as A.P. of
a = 150
d = -4 and n = x +8
So, Sn = 150 x
n [ 150 + (n - 1) (-2)] = 150 (n - 8) [ n = x +8 x 8 x]
150n 2n (n - 1
...more
Similar Questions for you
First term = a
Common difference = d
Given: a + 5d = 2 . (1)
Product (P) = (a1a5a4) = a (a + 4d) (a + 3d)
Using (1)
P = (2 – 5d) (2 – d) (2 – 2d)
-> = (2 – 5d) (2 –d) (– 2) + (2 – 5d) (2 – 2d) (– 1) + (– 5) (2 – d) (2 – 2d)
= –2 [ (d – 2) (5d – 2) + (d – 1) (5d – 2) + (d – 1) (5d – 2) + 5 (d – 1) (d – 2)]
= –2 [15d2 – 34d + 16]
at
-> d = 1.6
a, ar, ar2, ….ar63
a+ar+ar2 +….+ar63 = 7 [a + ar2 + ar4 +.+ar62]
1 + r = 7
r = 6
S20 = [2a + 19d] = 790
2a + 19d = 79 . (1)
2a + 9d = 29 . (2)
from (1) and (2) a = –8, d = 5
= 405 – 10
= 395
3, 7, 11, 15, 19, 23, 27, . 403 = AP1
2, 5, 8, 11, 14, 17, 20, 23, . 401 = AP2
so common terms A.P.
11, 23, 35, ., 395
->395 = 11 + (n – 1) 12
->395 – 11 = 12 (n – 1)
32 = n – 1
n = 33
Sum =
=
= 6699
3, a, b, c are in A.P.
a – 3 = b – a (common diff.)
2a = b + 3
and 3, a – 1, b + 1 are in G.P.
a2 + 1 – 2a = 3b + 3
a2 – 8a + 7 = 0 &n
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers