12. One kind of cake requires 200g of flour and 25 g of fat and another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cake which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes.
12. One kind of cake requires 200g of flour and 25 g of fat and another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cake which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes.
-
1 Answer
-
Let there be x cakes of first kind and y cakes of second kind. Therefore,
x ≥ 0 and y ≥ 0
The given information can be complied in a table as follows.
Flour (g)
Fat (g)
Cakes of first kind, x
200
25
Cakes of second kind, y
100
50
Availability
5000
1000
Total numbers of cakes, Z, that can be made are,
The mathematical formulation of the given problem is
Maximize
subject to the constraints,
The feasible region determined by the system of constraints is as follows
The corner points are A (25, 0), B (20, 10), O (0, 0), and C (0, 20).
The values of Z at these corner points are as follows.
Thus, the maximum numbers of cakes that can be made are 30 (20 of one kind and 10 of the other kind).
Similar Questions for you
= -8 (-3 + k)
For inconsistent
. (ii)
by using property
Adding (i) and (ii) we get 2l =
Given 2x + y – z = 3 . (i)
x – y – z = α . (ii)
3x + 3y + βz = 3 . (iii)
(i) x 2 – (ii) – (iii) – (1 + β) z = 3 - α
For infinite solution 1 + β = 0 = 3 - α
=> α = 3, β = -1
So, α + β - αβ = 5
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers