2. Prove that
2. Prove that
-
1 Answer
-
2.
By binomial theorem,
(a + b)n = nC0 (a)n (b)0 + nC1 (a)n–1 (b)1 + …………. + nCr (a)n–r (b)r + …………… + nCn (a)n–n (b)n
Where, b0 = 1 = an–n
So, (a + b)n = nCr (a)n–r (b)r
Putting a = 1 and b = 3 such that a + b = 4, we can rewrite the above equation as
(1 + 3)n = nCr (1)n–r.3r
=>4n = .nCr
Hence proved.
Similar Questions for you
Kindly consider the following figure
for
->r = 24
k = 3 + exponent of 5 in
=
= 3 + (12 + 2 – 4 – 0 – 7 – 1)
= 3 + 2 = 5
15.
=
We know that by binomial theorem,
=
=
Then,
= (3x2)3 + + +
= 27x6 + + +
= 27x6 + + + [ ]
= 27x6 + [ ] + [ ] + [ ]
= 27x6 +
= 27x6– 54ax5 +
15.
=
We know that by binomial theorem,
=
=
Then,
= (3x2)3 + + +
= 27x6 + + +
= 27x6 + + + [ ]
= 27x6 + [ ] + [ ] + [ ]
= 27x6 +
= 27x6– 54ax5 +
14. For (a – b) to be a factor of an – b nwe need to show (an – bn) = (a – b)k as k is a natural number.
We have, for positive n
an = =
=>an = nC0(a – b)n + nC1(a – b)n -1b + nC2(a – b)n – 2b2 + ………… +nCn-1 + nCnbn
=>an= + nC1 + nC2 + …………….…+ nCn-1 + [Since, nC0 = 1 and nCn = 1]
=> = +nC1 + nC2 + ……………… + nCn-1
=> = [ + nC1 + nC2 +………..…… + nCn-1 ]
=> &n
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers