26. An aeroplane can carry a maximum of 200 passengers. A profit of ?. 1000 is made on each executive class ticket, and a profit of ?. 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by executive class. Determine how many tickets of each type must be sold in order to maximise the profit for the airline. What is the maximum profit?

0 2 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • V

    Answered by

    Vishal Baghel | Contributor-Level 10

    4 months ago

    Let the airline sell x tickets of executive class and y tickets of economy class, respectively.

    The mathematical formulation of the given problem can be written as given below:

    Maximisez=1000x+600y (i)

    Subject to the constraints,

    x+y 200.. (ii)

    x20 (iii)

    y4x0 (iv)

    x, y0 (v)

    The feasible region determined by the constraints is given below:

    A (20, 80), B (40, 160) and C (20, 180) are the corner points of the feasible region.

    The values of z at these corner points are given below:

    Corner Point

    z = 1000x + 600y

     

    A (20, 80)

    68000

     

    B (40, 160)

    136000

    Maximum

    C (20, 180)

    128000

     

    136000 at (40, 160) is the maximum value of z.

    Therefore, 40 tickets of the executive class and 160 tickets of the economy class should be sold to maximise the profit, and the maximum profit is? 136000.

Similar Questions for you

A
alok kumar singh

Δ | 3 2 k 2 4 2 1 2 1 | = | 3 2 k 0 8 0 1 2 1 | , [ R 2 R 1 2 R 3 ]

= -8 (-3 + k)

For inconsistent Δ = 0 k = 3  

Δ x = | 1 0 2 k 6 4 2 5 m 2 1 | = 3 2 4 0 m 0 m 4 5              

V
Vishal Baghel

  l = π 2 π 2 ( [ x ] + [ s i n x ] ) d x . (i)

I = π 2 π 2 ( [ x ] + [ s i n x ] ) d x . (ii)

by using property ( a b f ( x ) d x = a b f ( a + b x ) d x )

Adding (i) and (ii) we get 2l = π 2 π 2 ( 2 ) d x = 2 π l = π

A
alok kumar singh

l n , m = 0 1 2 x n x m 1 d x , m , n N , n > m

l 6 + i , 3 l 3 + i , 3

A = 1 2 5 [ 1 5 1 5 1 5 0 1 1 2 1 1 2 0 0 1 2 8 ] = B 3 2

| A | = ( 1 3 2 ) 3 | B | = 1 1 0 5 . 2 1 9

V
Vishal Baghel

α + β + γ = 2 π

Δ = | 1 c o s γ c o s β c o s γ 1 c o s α c o s β c o s α 1 |

= 1 c o s 2 α c o s 2 β c o s 2 γ + 2 c o s α . c o s β . c o s γ

= c o s γ c o s ( α β ) + c o s γ c o s ( α β ) = 0

V
Vishal Baghel

Given 2x + y – z = 3         . (i)

x – y – z = α        . (ii)

3x + 3y + βz = 3                . (iii)

(i) x 2 – (ii) – (iii) – (1 + β) z = 3 - α

For infinite solution 1 + β = 0 = 3 - α

=> α = 3, β = -1

So, α + β - αβ = 5

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post