Feedback
×Thank you for using Shiksha Ask & Answer
We hope you got a satisfactory answer to your question.
How likely is it that you would recommend Shiksha Ask & Answer to a friend or colleague?
Not at all likely
Extreme likely
Please suggest areas of improvement for us
26. If prove that
26. If prove that
-
1 Answer
-
Given A =
A2 = AA =
A3 = A2A =
So, A3-6A2 + 7A + 2I
(2000 matrix )
Hence proud
<p>Given A = <span title="Click to copy mathml"><math><mrow><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>1</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>1</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p>A<sup>2</sup> = AA = <span title="Click to copy mathml"><math><mrow><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>1</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>1</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>1</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>1</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>1</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>2</mn></mtd><mtd columnalign="center"><mn>1</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>0</mn></mtd><mtd columnalign="center"><mn>1</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>3</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>0</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>1</mn><mo>×</mo><mn>2</mn></mtd><mtd columnalign="center"><mi>a</mi><mo>×</mo><mn>0</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>×</mo><mn>0</mn></mtd><mtd columnalign="center"><mn>0</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>2</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>1</mn><mo>×</mo><mn>3</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>3</mn><mo>×</mo><mn>2</mn></mtd><mtd columnalign="center"><mn>2</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>3</mn><mo>×</mo><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>3</mn><mo>×</mo><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>=</mo><mrow><mo>[</mo><mtable columnalign="left"><mtr><mtd><mrow><mn>1</mn><mo>+</mo><mn>4</mn><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>0</mn><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>2</mn><mo>+</mo><mn>6</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>2</mn><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>4</mn><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>2</mn><mo>+</mo><mn>3</mn></mrow></mtd></mtr><mtr><mtd><mrow><mn>2</mn><mo>+</mo><mn>6</mn><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>0</mn><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mn>4</mn><mo>+</mo><mn>9</mn></mrow></mtd></mtr></mtable><mo>]</mo></mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>5</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>8</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>4</mn></mtd><mtd columnalign="center"><mn>5</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>8</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>1</mn><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p>A<sup>3</sup> = A<sup>2</sup>A = <span title="Click to copy mathml"><math><mrow><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>5</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>8</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>4</mn></mtd><mtd columnalign="center"><mn>5</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>8</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>1</mn><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>1</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>1</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>5</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>8</mn><mo>×</mo><mn>2</mn></mtd><mtd columnalign="center"><mn>5</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>8</mn><mo>×</mo><mn>0</mn></mtd><mtd columnalign="center"><mn>5</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>8</mn><mo>×</mo><mn>3</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>5</mn><mo>×</mo><mn>2</mn></mtd><mtd columnalign="center"><mn>2</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>5</mn><mo>×</mo><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>4</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>5</mn><mo>×</mo><mn>3</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>8</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>1</mn><mn>3</mn><mo>×</mo><mn>2</mn></mtd><mtd columnalign="center"><mn>8</mn><mo>×</mo><mn>0</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>0</mn></mtd><mtd columnalign="center"><mn>8</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>1</mn><mo>+</mo><mn>1</mn><mn>3</mn><mo>×</mo><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>5</mn><mo>+</mo><mn>1</mn><mn>6</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>1</mn><mn>0</mn><mo>+</mo><mn>2</mn><mn>4</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>2</mn><mo>+</mo><mn>1</mn><mn>0</mn></mtd><mtd columnalign="center"><mn>8</mn></mtd><mtd columnalign="center"><mn>4</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>1</mn><mn>5</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>8</mn><mo>+</mo><mn>2</mn><mn>6</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>1</mn><mn>6</mn><mo>+</mo><mn>3</mn><mn>9</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span> <span title="Click to copy mathml"><math><mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>2</mn><mn>1</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>3</mn><mn>4</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>1</mn><mn>2</mn></mtd><mtd columnalign="left"><mn>8</mn></mtd><mtd columnalign="left"><mn>2</mn><mn>3</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>3</mn><mn>4</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>5</mn><mn>5</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p>So, A<sup>3</sup>-6A<sup>2</sup> + 7A + 2I</p><p><span title="Click to copy mathml"><math><mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>2</mn><mn>1</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>3</mn><mn>4</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>1</mn><mn>2</mn></mtd><mtd columnalign="left"><mn>8</mn></mtd><mtd columnalign="left"><mn>2</mn><mn>3</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>3</mn><mn>4</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>5</mn><mn>5</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>−</mo><mn>6</mn><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>5</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>8</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>2</mn></mtd><mtd columnalign="left"><mn>4</mn></mtd><mtd columnalign="left"><mn>5</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>8</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>1</mn><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>+</mo><mn>7</mn><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>1</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>2</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>2</mn></mtd><mtd columnalign="left"><mn>1</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>2</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>3</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>+</mo><mn>2</mn><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>1</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>1</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>1</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>2</mn><mn>1</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>3</mn><mn>4</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>1</mn><mn>2</mn></mtd><mtd columnalign="left"><mn>8</mn></mtd><mtd columnalign="left"><mn>2</mn><mn>3</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>3</mn><mn>4</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>5</mn><mn>5</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>−</mo><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>3</mn><mn>0</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>4</mn><mn>8</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>1</mn><mn>2</mn></mtd><mtd columnalign="center"><mn>2</mn><mn>4</mn></mtd><mtd columnalign="center"><mn>3</mn><mn>0</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>4</mn><mn>8</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>7</mn><mn>8</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>+</mo><mrow><mo>[</mo><mrow><mtable><mtr columnalign="center"><mtd columnalign="center"><mn>7</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>1</mn><mn>4</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>1</mn><mn>4</mn></mtd><mtd columnalign="center"><mn>7</mn></mtd></mtr><mtr columnalign="center"><mtd columnalign="center"><mn>1</mn><mn>4</mn></mtd><mtd columnalign="center"><mn>0</mn></mtd><mtd columnalign="center"><mn>2</mn><mn>1</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>+</mo><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>2</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>2</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>2</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>2</mn><mn>1</mn><mo>−</mo><mn>3</mn><mn>0</mn><mo>+</mo><mn>7</mn><mo>+</mo><mn>2</mn></mtd><mtd columnalign="left"><mn>0</mn><mo>−</mo><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd columnalign="left"><mn>3</mn><mn>4</mn><mo>−</mo><mn>4</mn><mn>8</mn><mo>+</mo><mn>1</mn><mn>4</mn><mo>+</mo><mn>0</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>1</mn><mn>2</mn><mo>−</mo><mn>1</mn><mn>2</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd columnalign="left"><mn>8</mn><mo>−</mo><mn>2</mn><mn>4</mn><mo>+</mo><mn>1</mn><mn>4</mn><mo>+</mo><mn>2</mn></mtd><mtd columnalign="left"><mn>2</mn><mn>3</mn><mo>−</mo><mn>3</mn><mn>0</mn><mo>+</mo><mn>7</mn><mo>+</mo><mn>0</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>3</mn><mn>4</mn><mo>−</mo><mn>4</mn><mn>8</mn><mo>+</mo><mn>1</mn><mn>4</mn><mo>+</mo><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn><mo>−</mo><mn>0</mn><mo>+</mo><mn>0</mn><mo>+</mo><mn>0</mn></mtd><mtd columnalign="left"><mn>5</mn><mn>5</mn><mo>−</mo><mn>7</mn><mn>8</mn><mo>+</mo><mn>2</mn><mn>1</mn><mo>+</mo><mn>2</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow></math></span></p><p><span title="Click to copy mathml"><math><mrow><mo>=</mo><mrow><mo>[</mo><mrow><mtable columnalign="left"><mtr columnalign="left"><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd></mtr><mtr columnalign="left"><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd><mtd columnalign="left"><mn>0</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> (2000 matrix )</p><p>Hence proud</p>
Similar Questions for you
Let
Given ...(1)
∴ x1 + z1 = 2 … (2)
x2 + z2 = 0 … (3)
x3 + z3 = 0 … (4)
Given
⇒ – x1 + z1 = −4 … (5)
–x2 + z2 = 0 &nbs
Let
Given ...(1)
∴ x1 + z1 = 2 … (2)
x2 + z2 = 0 … (3)
x3 + z3 = 0 … (4)
Given
⇒ – x1 + z1 = −4 … (5)
–x2 + z2 = 0 … (6)
–x3 + z3 = 4 … (7)
Given
∴ y1 = 0, y2 = 2, y3 = 0
∴ from (2), (3), (4), (5), (6) and (7)
x1 = 3, x2 = 0, x3 = –1
y1 = 0, y2 = 2, y3 = 0
z1 = –1, z2 = 0, z3 = 3
Now (A – 3I) =
=
[z = 1], [y = –2], [x = –3]
g (x) = px + q
Compare 8 = ap2 …………… (i)
-2 = a (2pq) + bp
0 = aq2 + bq + c
=>4x2 + 6x + 1 = apx2 + bpx + cp + q
=> Andhra Pradesh = 4 ……………. (ii)
6 = bp
1 = cp + q
From (i) & (ii), p = 2, q = -1
=> b = 3, c = 1, a = 2
f (x) = 2x2 + 3x + 1
f (2) = 8 + 6 + 1 = 15
g (x) = 2x – 1
g (2) = 3
Kindly consider the following figure
B = (I – adjA)5
Kindly consider the following figure
B = (I – adjA)5
System of equation is
R1 – 2 R2, R3 – R2
System of equation will have no solution for = -7.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers
Share Your College Life Experience
Didn't find the answer you were looking for?
Search from Shiksha's 1 lakh+ Topics
Please select a topic from suggestions
or
Ask Current Students, Alumni & our Experts