3. Find the mean deviation about the median for the data in Exercises 3 and 4.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17

0 2 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • P

    Answered by

    Payal Gupta | Contributor-Level 10

    4 months ago

    3. Arranging the data in ascending order we get,

    10,11,1112,13,13,14,16,16,17,17,18

    As n=12, even

    So, median is the mean of (M2)th and (M2+1)th observation.

    =6thobservation +7thobservation2

    M=13+142=272=13.5.

    So, deviation of respective observation about the median. M,|xiM| are

    xi

    10

    11

    11

    12

    13

    13

    14

    16

    16

    17

    17

    18

    |xi - M|

    3.5

    2.5

    2.5

    1.5

    0.5

    0.5

    0.5

    2.5

    2.5

    3.5

    3.5

    4.5

    Therefore the mean deviation about the mean is

     M.D.(M)=1n×i=1n|xiM|

    =112×(3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5)

    =2812=2.33.

Similar Questions for you

A
alok kumar singh

Variance = x 2 n ( x ¯ ) 2  

6 0 2 + 6 0 2 + 4 4 2 + 5 8 2 + 6 8 2 + α 2 + β 2 + 5 6 2 8 = ( 5 8 ) 2 = 6 6 . 2            

7 2 0 0 + 1 9 3 6 + 3 3 6 4 + 4 6 2 4 + 3 1 3 6 + α 2 + β 2 8 = 3 3 6 4 = 6 6 . 2             

2 5 3 2 . 5 + α 2 + β 2 8 3 3 6 4 = 6 6 . 2            

α2 + β2 = 897.7 × 8

= 7181.6

A
alok kumar singh

xi

fi

c.f.

0 – 4

4 – 8

8 – 12

12 – 16

16 – 20

2

4

7

8

6

2

6

13

21

27

N = f = 2 7

( N 2 ) = 2 7 2 = 1 3 . 5

So, we have median lies in the class 12 – 16

I1 = 12, f = 8, h = 4, c.f. = 13

So, here we apply formula

M = I 1 + N 2 c . f . f × h = 1 2 + 1 3 . 5 1 3 8 × 4

= 1 2 + 5 2

M = 2 4 . 5 2 = 1 2 . 2 5

20 M = 20 × 12.25

= 245

A
alok kumar singh

  a + b + 6 8 + 4 4 + 4 0 + 6 0 6 = 5 5

212 + a + b = 330

a + b = 118

x i 2 n ( x ¯ ) 2 = 1 9 4          

a 2 + b 2 + ( 6 8 ) 2 + ( 4 4 ) 2 + ( 4 0 ) 2 + ( 6 0 ) 2 6 = ( 5 5 ) 2 = 1 9 4

= 3219

11760 + a2 + b2 = 19314

a2 + b2 = 19314 – 11760

= 7554

(a + b)2 –2ab = 7554

From here b = 41.795

a + b = 118

a + b + 2b = 118 + 83.59

= 201.59

A
alok kumar singh

Kindly go throuigh the solution

Given   i = 1 1 8 ( x i α ) = 3 6 i . e i = 1 1 8 x i 1 8 α = 3 6 . . . . . . . . . . ( i )

&       i = 1 1 8 ( x i β ) 2 = 9 0 i . e i = 1 1 8 x i 2 2 β x i + 1 8 β 2 = 9 0 . . . . . . . . . . . . . ( i i )      

(i) & (ii)   i = 1 1 8 x i 2 = 9 0 1 8 β + 3 6 β ( α + 2 ) . . . . . . . . . . . . . ( i i i )

Now variance σ 2 = x i 2 n ( x i n ) 2 = 1 given

->(a - b) (a - b + 4) = 0

Since α β s o | α β | = 4  

 

V
Vishal Baghel

M e a n = 3 + 1 2 + 7 + a + ( 4 3 a ) 5 = 1 3  

Variance = 3 2 + 1 2 2 + 7 2 + a 2 + ( 4 3 a ) 2 5 ( 1 3 ) 2  

2 a 2 a + 1 5 N a t u r a l n u m b e r      

Let 2a2 – a + 1 = 5x

D = 1 – 4 (2) (1 – 5n)

= 40n – 7, which is not 4 λ o r 4 λ + 1 f r o m .  

As each square form is 4 λ o r 4 λ + 1  

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post