31. A toy company manufactures two types of dolls, A and B. Market research and available resources have indicated that the combined production level should not exceed 1200 dolls per week, and the demand for dolls of type B is at most half of that for dolls of type A. Further, the production level of dolls of type A can exceed three times the production of dolls of other types by at most 600 units. If the company makes a profit of ?. 12 and ?. 16 per doll on dolls A and B, respectively, how many of each should be produced weekly in order to maximise the profit?

0 2 Views | Posted 4 months ago
Asked by Shiksha User

  • 1 Answer

  • V

    Answered by

    Vishal Baghel | Contributor-Level 10

    4 months ago

    Let x and y be the number of dolls of type A and B, respectively, that are produced in a week.

    The given problem can be formulated as given below:

    Maximisez=12x+16y.. (i)

    Subject to the constraints,

    x+y 1200 (ii)

    yx/2orx2y. (iii)


    x–3y600. (iv)

    x, y0 (v)

    The feasible region determined by the system of constraints is given below:

    A (600, 0), B (1050, 150) and C (800, 400) are the corner points of the feasible region.

    The values of z at these corner points are given below:

    Corner Point

    z = 12x + 16y

     

    A (600, 0)

    7200

     

    B (1050, 150)

    15000

     

    C (800, 400)

    16000

    Maximum

    The maximum value of z is 16000 at (800, 400).

    Hence, 800 and 400 dolls of type A and type B should be produced, respectively, to get the maximum profit of? 16000.

Similar Questions for you

A
alok kumar singh

Δ | 3 2 k 2 4 2 1 2 1 | = | 3 2 k 0 8 0 1 2 1 | , [ R 2 R 1 2 R 3 ]

= -8 (-3 + k)

For inconsistent Δ = 0 k = 3  

Δ x = | 1 0 2 k 6 4 2 5 m 2 1 | = 3 2 4 0 m 0 m 4 5              

V
Vishal Baghel

  l = π 2 π 2 ( [ x ] + [ s i n x ] ) d x . (i)

I = π 2 π 2 ( [ x ] + [ s i n x ] ) d x . (ii)

by using property ( a b f ( x ) d x = a b f ( a + b x ) d x )

Adding (i) and (ii) we get 2l = π 2 π 2 ( 2 ) d x = 2 π l = π

A
alok kumar singh

l n , m = 0 1 2 x n x m 1 d x , m , n N , n > m

l 6 + i , 3 l 3 + i , 3

A = 1 2 5 [ 1 5 1 5 1 5 0 1 1 2 1 1 2 0 0 1 2 8 ] = B 3 2

| A | = ( 1 3 2 ) 3 | B | = 1 1 0 5 . 2 1 9

V
Vishal Baghel

α + β + γ = 2 π

Δ = | 1 c o s γ c o s β c o s γ 1 c o s α c o s β c o s α 1 |

= 1 c o s 2 α c o s 2 β c o s 2 γ + 2 c o s α . c o s β . c o s γ

= c o s γ c o s ( α β ) + c o s γ c o s ( α β ) = 0

V
Vishal Baghel

Given 2x + y – z = 3         . (i)

x – y – z = α        . (ii)

3x + 3y + βz = 3                . (iii)

(i) x 2 – (ii) – (iii) – (1 + β) z = 3 - α

For infinite solution 1 + β = 0 = 3 - α

=> α = 3, β = -1

So, α + β - αβ = 5

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Learn more about...

Share Your College Life Experience

Didn't find the answer you were looking for?

Search from Shiksha's 1 lakh+ Topics

or

Ask Current Students, Alumni & our Experts

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.

Need guidance on career and education? Ask our experts

Characters 0/140

The Answer must contain atleast 20 characters.

Add more details

Characters 0/300

The Answer must contain atleast 20 characters.

Keep it short & simple. Type complete word. Avoid abusive language. Next

Your Question

Edit

Add relevant tags to get quick responses. Cancel Post