33. Let R be a relation from N to N defined by R = {(a, b) : a, b N and a = b2}. Are the following true?
(i) (a,a) R, for all a _ N
(ii) (a,b) R, implies (b,a) R
(iii) (a,b) R, (b,c) R implies (a,c) R.
Justify your answer in each case.
33. Let R be a relation from N to N defined by R = {(a, b) : a, b N and a = b2}. Are the following true?
(i) (a,a) R, for all a _ N
(ii) (a,b) R, implies (b,a) R
(iii) (a,b) R, (b,c) R implies (a,c) R.
Justify your answer in each case.
-
1 Answer
-
33. Given, R= { (a, b): a, b N and a = b2}
(i) Let a = 2 N
Then b = 22 = 4 N
but a ≠ b.
Hence the given statement is not true.
(ii) For a=b2 the inverse b=a2 may not hold true
Example (4,2) R, a=4, b=2 and a=b2
but (2,4) R.
Hence, the given statement is not true.
(iii) If (a, b) R
a=b2…… (1)
and (b, c) R
b=c2……. (2)
so for (1) and (2),
a= (c2)2=c4.
is, a ≠c2,
Hence, (a, c) R.
? The given statement is false.
Similar Questions for you
Total number of possible relation =
Favourable relations =
Probability =
Circle S? : x² + y² - 10x - 10y + 41 = 0.
Center C? = (5, 5). Radius r? = √ (5² + 5² - 41) = √ (25 + 25 - 41) = √9 = 3.
Circle S? : x² + y² - 16x - 10y + 80 = 0.
Center C? = (8, 5). Radius r? = √ (8² + 5² - 80) = √ (64 + 25 - 80) = √9 = 3.
The solution checks if the center of one circle lies on the other.
Put C? (8, 5) into S? : 8² + 5² - 10 (8) - 10 (5) + 41 = 64 + 25 - 80 - 50 + 41 = 130 - 130 = 0. So C? lies on S?
Put C? (5, 5) into S? : 5² + 5² - 16 (5) - 10 (5) + 80 = 25 + 25 - 80 - 50 + 80 = 130 - 130 = 0. So C? lies on S?
This means bo
Kindly consider then following figure
36. Given, A={9,10,11,12,13}.
f(x)=the highest prime factor of n.
and f: A → N.
Then, f(9)=3 [? prime factor of 9=3]
f (10)=5 [? prime factor of 10=2,5]
f(11)=11 [? prime factor of 11 = 11]
f(12)=3 [? prime factor of 12 = 2, 3]
f(13)=13 [? prime factor of 13 = 13]
?Range of f=set of all image of f(x) = {3,5,11,13}.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers