39. It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
39. It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
-
1 Answer
-
39. As out of the total 9 seats 4 women are to be at even places we can have the following arrangement.
Seat places
M
W
M
W
M
W
M
W
M
Seat places
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
Also from this arrangement the women and men can rearrange among themselves.
Therefore, the required number of ways = 4! * 5!
= (4 * 3 * 2 * 1) * (5 * 4 * 3 * 2 * 1)
= 24 * 120
= 2880
Similar Questions for you
Start with
(1)
(2)
(3) GTE : 4!, GTN: 4!, GTT : 4!
(4) GTWENTY = 1
⇒ 360 + 60 + 60 + 24 + 24 + 24 + 1 = 553
x + 2y + 3z = 42
0 x + 2y = 42 ->22 cases
1 x + 2y = 39 ->19 cases
2 x + 2y = 36 ->19 cases
3 x + 2y = 33 ->17 cases
4 x + 2y = 30 ->16 cases
5 x + 2y = 27 ->14 cases
6 x + 2y = 24 ->13 cases
7 x + 2y = 21 ->11 cases
8 x + 2y = 18 ->10 cases
9 x + 2y = 15 ->8 cases
10 x + 2y =12 -> 7 cases
11 x + 2y = 9 -> 5 cases
12 x + 2y = 6 -> 4 cases
13 x + 2y = 3 -> 2 cases
14 x + 2y = 0 -> 1 cases.
Total ways to partition 5 into 4 parts are:
5 0
4 1 0
3 2 0
3 1 0
2 1
51 Total way
After giving 2 apples to each child 15 apples left now 15 apples can be distributed in
15+3–1C2 = 17C2 ways
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers